<h3>
Answer: 11.9 cm</h3>
Work Shown:
|x-12.2| = 0.3
x-12.2 = -0.3 or x-12.2 = 0.3
x = -0.3+12.2 or x = 0.3+12.2
x = 11.9 or x = 12.5
The min length is 11.9 cm and the max length is 12.5 cm
Subtracting 12.2 from either x value leads to a positive difference of 0.3 which is the margin of error.
So a absolute value is just the opposite of the value given, (unless it is a positive number) so you start on -12 and count 24 units to the right so it would make positive 12
<h3>
Answer: 10.1 cm approximately</h3>
=====================================================
Explanation:
The double tickmarks show that segments DE and EB are the same length.
The diagram shows that DB = 16 cm long
We'll use these facts to find DE
DE+EB = DB
DE+DE = DB
2*DE = DB
DE = DB/2
DE = 16/2
DE = 8
-------------
Now let's focus on triangle DEC. We just found the horizontal leg is 8 units long. The vertical leg is EC which is unknown for now. We'll call it x. The hypotenuse is CD = 9
Use the pythagorean theorem to find x
a^2+b^2 = c^2
8^2+x^2 = 9^2
64+x^2 = 81
x^2 = 81 - 64
x^2 = 17
x = sqrt(17)
That makes EC to be exactly sqrt(17) units long.
If you follow those same steps for triangle ADE, then you'll find the missing length is AE = 6
---------------
So,
AC = AE+EC
AC = 6 + sqrt(17)
AC = 10.1231056256177
AC = 10.1 cm approximately
Answer:
The answer is "Option B".
Step-by-step explanation:
The difference between most time and also the least spending time on Internet surfing is 3 hours. Since we do not have charts for tables etc., only 3 can be used we need. A range is defined as the difference between the largest and the smallest amounts. The range between both the largest as well as the smallest is unique. In this reply, it tells us that the gap between most time and the fewer hours invested surfing the web is 3 hours.
- In option A, it is wrong since the range has nothing to do with formulas. (Of course, the dividend with a divisor results in a quotient). Only subtraction and not division may be achieved.
- In option C, when all surf for exactly one hour, it could take the largest time of 3 hours and 3 hours, the last time. Add it into the equation and the range of the data present would've been 0.
- In option D, It is erroneous even as the range is not the mean, and the mean seems to be the average. We search for both the range, not the mean.
Answer:70
Step-by-step explanation:
multiply 38 to get 76 and then subtract 6