Step-by-step explanation:
we have
length =8in
breadth =6in
since . The length and width of the actual flower bed will be 24 times larger than the length and width in the drawing.
new
length=8×24=192in
breadth =6×24=144in
(b) What is the perimeter of the actual flower bed ? Show your work.
<em>answer:the perimeter of the</em><em> </em><em>actual flower bed</em><em> =2(l+b)</em>
<em> =2(l+b)=2(192+144)=672</em><em>in</em>
(a) What is the perimeter of the drawing? Show your work
<em>answer</em><em> </em><em>:</em><em> </em><em>the perimeter of the </em><em>drawing</em>
<em>=</em><em>2</em><em>(</em><em>8</em><em>+</em><em>6</em><em>)</em><em>=</em><em>9</em><em>6</em><em>in</em>
<em>(c) What is the effect on the perimeter of the flower bed with the dimensions are multiplied by 24? Show your work</em>
<em>p</em><em>e</em><em>r</em><em>i</em><em>m</em><em>e</em><em>t</em><em>e</em><em>r</em><em> </em><em>o</em><em>f</em><em> </em><em>flower </em><em>bed</em><em> </em><em>/</em><em>p</em><em>e</em><em>r</em><em>i</em><em>m</em><em>e</em><em>t</em><em>e</em><em>r</em><em> </em><em>o</em><em>f</em><em> </em><em>d</em><em>r</em><em>a</em><em>w</em><em>i</em><em>n</em><em>g</em>
<em>=</em><em>9</em><em>6</em><em>/</em><em>6</em><em>7</em><em>2</em><em>=</em><em>1</em><em>/</em><em>7</em>
<h3>
<em>perimeter</em><em> </em><em>of</em><em> </em><em>drawing</em><em> </em><em>is</em><em> </em><em>increased</em><em> </em><em>by</em><em> </em><em>7</em><em>t</em><em>i</em><em>m</em><em>e</em><em>s</em><em> </em><em>of</em><em> </em><em>perimeter</em><em> </em><em>of</em><em> </em><em>flower</em><em> </em><em>bed</em></h3>
I believe the answer is
.5
Answer:
:00000000000 DANGGGGGGGGGGGGGGGGGGGGGGG
Step-by-step explanation:
Step 1. Take out the constants
(4 * 7)xx^2
Step 2. Simplify 4 * 7 to 28
28xx^2
Step 3. Use the Product Rule
28x^1 + 2
Step 4. Simplify 1 + 2 to 3
28x^3
Answers7, 11 are linear.
9 is a quadratic. y = 2x^2 - 3
Problem 11First find the slope. Use the first two points to do that.
y2 = 8
y1 = 6
x2 = - 3
x1 = - 1
<u>Sub and solve</u>
y = (y2 - y1) / (x2 - x1)
y = (8 - 6) / (-3 - - 1)
y = 2/- 2
y = - 1
<u>Step 2</u>
Find the y intercept
So far we have
y = - x + b
x = 0
y = 5
5 = 0 *-1 + b
b = 5
<u>Answer</u>
y = -x + 5
Problem 9 is the quadratic.
y = a*x^2 + b
when x = 0
y = - 3
y = ax^2 - 3 Now use any other point to solve for a.
Use (2,5)
5 = a(2)^2 - 3 Add 3 to both sides.
5 + 3 = a*4
8 = 4a Divide by 4
8/4 = a
2 = a
<u>check</u>
Use (-1,1) to check
y = 2x^2 - 3
y = 2(-1)^2 - 3
y = 2*1 - 3
y = 2 - 3
y = - 1 Which is as it should be.
Problem 7 Is linear. Do the same way as 11.
The graph is included below.
See if you can get the equation line.
You should get
y = 2x - 4