Constant is the scale term in proportionality. Suppose one variable is dependent on the other and one variable become twice, other becomes also twice and if one becomes half, other too becomes half., but they are two different variables which are no-where linked (like cost(money) vs quantity). Quantity and cost are two different things but they abridge a mathematical relation of proportionality. So in the mathematics to abridge these two different variables, we need something. Constant serves that purpose.
Given :
Apa-bear weighs 250 lb.
Mama-bear weighs 50 pounds less than Papa-bear does.
Their 2 cubs weigh 80 pounds each.
To Find :
The total weight of the Bear family .
Solution :
Weight of mama bear =
.
Total weight is the sum of all all weight .


Therefore , total weight of the Bear family is 610 lb .
Hence , this is the required solution .
Answer: A. contains a number and a unit
Step-by-step explanation:
Quantitative observations measure the quantity, or the amount, of a certain thing. Therefore they must always use a number value to measure the amounts, and a unit to signify what the amount is for.
Answer:what grade are you in?
Step-by-step explanation:
Answer:
Option b is correct (8,13).
Step-by-step explanation:
7x - 4y = 4
10x - 6y =2
it can be represented in matrix form as![\left[\begin{array}{cc}7&-4\\10&-6\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}4\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D7%26-4%5C%5C10%26-6%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
A=
X= ![\left[\begin{array}{c}x\\y\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D)
B= ![\left[\begin{array}{c}4\\2\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
i.e, AX=B
or X= A⁻¹ B
A⁻¹ = 1/|A| * Adj A
determinant of A = |A|= (7*-6) - (-4*10)
= (-42)-(-40)
= (-42) + 40 = -2
so, |A| = -2
Adj A=
A⁻¹ =
/ -2
A⁻¹ = ![\left[\begin{array}{cc}3&-2\\5&-7/2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-2%5C%5C5%26-7%2F2%5Cend%7Barray%7D%5Cright%5D%20)
X= A⁻¹ B
X= ![\left[\begin{array}{cc}3&-2\\5&-7/2\end{array}\right] *\left[\begin{array}{c}4\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-2%5C%5C5%26-7%2F2%5Cend%7Barray%7D%5Cright%5D%20%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
X= ![\left[\begin{array}{c}(3*4) + (-2*2)\\(5*4) + (-7/2*2)\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%283%2A4%29%20%2B%20%28-2%2A2%29%5C%5C%285%2A4%29%20%2B%20%28-7%2F2%2A2%29%5Cend%7Barray%7D%5Cright%5D)
X= ![\left[\begin{array}{c}12-4\\20-7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D12-4%5C%5C20-7%5Cend%7Barray%7D%5Cright%5D)
X= ![\left[\begin{array}{c}8\\13\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C13%5Cend%7Barray%7D%5Cright%5D)
x= 8, y= 13
solution set= (8,13).
Option b is correct.