<h3>
Answer: 73</h3>
==================================================
Work Shown:
Check out the diagram below. Note the pair of alternate interior angles that are congruent (each 37 degrees). Then focus on triangle ABC. With the reference angle being at A, this means we use the tangent function because BC = x is the opposite side and AB = 97 is the adjacent side.
tan(angle) = opposite/adjacent
tan(A) = BC/AB
tan(37) = x/97
97*tan(37) = x
x = 97*tan(37)
x = 73.094742859971
For the last step, you'll need a calculator that can handle trig functions. Make sure the calculator is in degree mode. The result here is approximate. This rounds to 73 when rounding to the nearest whole number.
Answer:
2.2 metres squared
Step-by-step explanation:
We need to find the area of this trapezoid.
The area of a trapezoid is denoted by:
, where
and
are the parallel bases and h is the height
Here, we already know the lengths of the two bases; they are 0.9 metres and 2.3 metres. However, we need to find the length of the height.
Notice that one of the angles is marked 45 degrees. Let's draw a perpendicular line from top endpoint of the segment labelled 0.9 to the side labelled 2.3. We now have a 45-45-90 triangle with hypotenuse 2.0 metres. As one of such a triangle's properties, we can divide 2.0 by √2 to get the length of both legs:
2.0 ÷ √2 = √2 ≈ 1.414 ≈ 1.4
Thus, the height is h = 1.4 metres. Now plug all these values we know into the equation to find the area:


The answer is thus 2.2 metres squared.
<em>~ an aesthetics lover</em>
SOLUTION:
= ( 7 / 8 )m + 9 / 10 - 2m - 3 / 5
= - ( 9 / 8 )m + 3 / 10
The answer would be c because if you see closely the function is -1 and 4 March determining the perspectives and how the procedure goes
5*2=10
10+12*4.5=64cm^2
Hope it helps