Answer:
m∠B = 121
m∠C = 59
Step-by-step explanation:
Angle B:

10(14)-19 = 140-19 = 121
Angle C:
(121)2 = 242
360-242 = 118
118/2 = 59
Answer:
15 cm
Step-by-step explanation:
Circumference of circle= 2πr, where r us the radius of the circle.
Given that the circumference of circle is 60πcm,
60π= 2πr
Divide by 2 on both sides,
15π= πr
Divide by π on both sides,
15= r
Thus, radius of circle= 15cm.
Answer:
A. 1206 cm³
Step-by-step explanation:
We have a cone and are asked to find the approximate volume of it.
Keep in mind we are using π for 3.14
The forumla of a cone is V = πr²
We know the radius = 12
and the height = 8
Substitute :
V = π12²
Since these are multiplied with each other, we can first start off with multiplying the fraction, including with factoring 12²:
V = 
Cancel the common factor - 3 :
V = 
Multiply 8 and 3π :
V = 
Solve the exponent :
V = 
Multiply :
V = 
Multiply for the final answer :
1205.76 cm³
which can be rounded up to
A. 1206 cm³
When countries are at war, the general rule is that civilians should not be targeted and I <u>support </u>this notion.
<h3>The Concept of War</h3>
- War is fought by nations to assert dominance and achieve certain conditions.
- War is fought by soldiers who pick of weapons to engage in war.
Civilians should therefore not be targeted because they have not picked up weapons to engage in the fight and so cannot be said to be targets. It makes no sense to leave the person you are fighting and who wants to fight you, to fight those who are not interested in fighting.
In conclusion, civilians should not be targeted.
Find out more on targeting civilians at brainly.com/question/261234.
Answer:
We need a sample size of at least 719
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.
How large a sample size is required to vary population mean within 0.30 seat of the sample mean with 95% confidence interval?
This is at least n, in which n is found when
. So






Rouding up
We need a sample size of at least 719