1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marrrta [24]
3 years ago
5

ANSWER PLEASE!

Mathematics
1 answer:
OverLord2011 [107]3 years ago
3 0

Answer:

a because you dont have to pay that much back your your friend if you dont buy the magazines then you will only have to pay $12 to your friend and if you buy the magazines then you have to pay $21

Step-by-step explanation:

You might be interested in
Jerome's sister told him to multiply both the amount of water and the amount of drink
Akimi4 [234]

Step-by-step explanation:

i m not sure about this

have a nice day

3 0
2 years ago
Read 2 more answers
Please help with this
vovangra [49]

Answer:

x=35

Step-by-step explanation:

When a is parallel to b, the two angles will add to 180

x+ 3x+40=180

Combine like terms

4x+40 =180

Subtract 40 from each side

4x= 180-40

4x= 140

Divide by 4

4x/4 = 140/4

x=35

8 0
3 years ago
Suppose you mark n points on a circle, where n is a whole number greater than 1. The number of segments you can draw that connec
dezoksy [38]
Just subsitute 8 for n
1/2(8)^2-1/2(8)
1/2(64)-4
32-4
28
D
7 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Let f(x) = 12/4x+2. find f(-1)
Step2247 [10]
Just plug in -1 for x and u should get ur answer
7 0
2 years ago
Other questions:
  • Please help!
    7·2 answers
  • How to evaluate -128^5/7
    10·1 answer
  • Anyone??
    7·1 answer
  • What is the value of X in the equation 3X (-1) / 9Y equals 18 when Y equal 27
    8·1 answer
  • The circumference (C) of a swimming pool is 47 feet. Which formula can you use to find the radius (r) if you know that C = 2πr
    14·2 answers
  • What is the value of 6 in 3.651<br><br> A. Ones<br> B. Tenths<br> C. Tens<br> D. Hundredths
    13·2 answers
  • Max practices the piano and the guitar for a total of 150 minutes every day. He practices the guitar for 80 minutes longer than
    13·1 answer
  • Find the sum of the arithmetic series given a1=8,a14=99,n=14.
    11·1 answer
  • If a=3 and b=8 what is c
    6·1 answer
  • X2 + y2 + 42x + 38y − 47 = 0. The equation of this circle in standard form is
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!