Answer:
John von Neumann is remarkable for his vast knowledge of mathematics, and the sciences as well as his ability to correlate the pure and applied sciences.
Explanation:
John von Neumann who was born on December 28 1903, and died on February 8,1957 was known for his extensive knowledge of mathematics, physics, computer, economics, and statistics. In computing, he was known to conceive the idea of the self-replicating machines that thrive in the automata cellular environment, the von Neumann architecture, stochastic computing and linear programming.
He developed the game theory in Economics, and laid the foundation for several mathematical theories. He contributed greatly to quantum mechanics and quantum physics. Little wonder, he was dubbed "the last representative of the great mathematicians."
Its 10, value always has to be positive.
Answer:
In HTML file
<body style="background-color:orange;">
Or
In CSS file
body {
background-color: orange;
}
Answer:
-
= 1
= 1
Explanation:
Argon atom has atomic number 18. Then, it has 18 protons and 18 electrons.
To determine the quantum numbers you must do the electron configuration.
Aufbau's principle is a mnemonic rule to remember the rank of the orbitals in increasing order of energy.
The rank of energy is:
1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < 5d < 6p < 7s < 5f < 6d < 7d
You must fill the orbitals in order until you have 18 electrons:
- 1s² 2s² 2p⁶ 3s² 3p⁶ : 2 + 2 + 6 + 2 + 6 = 18 electrons.
The last electron is in the 3p orbital.
The quantum numbers associated with the 3p orbitals are:
= 1 (orbitals s correspond to
= 0, orbitals p correspond to
= 1, orbitals d, correspond to
= 2 , and orbitals f correspond to
= 3)
can be -1, 0, or 1 (from -
to +
)
- the fourth quantum number, the spin can be +1/2 or -1/2
Thus, the six possibilities for the last six electrons are:
- (3, 1, -1 +1/2)
- (3, 1, -1, -1/2)
- (3, 1, 0, +1/2)
- (3, 1, 0, -1/2)
- (3, 1, 1, +1/2)
- (3, 1, 1, -1/2)
Hence, the correct choice is:
-
= 1
= 1