5A + 7 = 3A + 7 + 2A
We need to solve for A.
3A + 7 + 2A = 3A + 2A + 7 = 5A + 7 (We can add 3A and 2A because it's the same variable, so we add the coefficients)
5A + 7 = 3A + 7 + 2A
5A + 7 = 5A + 7
5A + 7 is always equal to 5A + 7 because it's the same equation. So the equation got infinitely many solutions.
Answer:
<h3>
A = ²⁵/₄x² + ⁷⁵/₂x + 50</h3>
Step-by-step explanation:
L = ⁵/₂x + 10
W = ⁵/₂x + 5
A = L•W
A = (⁵/₂x + 10)(⁵/₂x + 5)
A = ⁵/₂x•⁵/₂x + ⁵/₂x•5 + 10•⁵/₂x + 10•5
A = ²⁵/₄x² + ²⁵/₂x + ⁵⁰/₂x + 50
A = ²⁵/₄x² + ⁷⁵/₂x + 50
Or if yoy mean:
L = 5/(2x) + 10
W = 5/(2x) + 5
A = [5/(2x) + 10][5/(2x) + 5] = 25/(4x²) + 75/(2x) + 50
we know there are 180° in π radians, how many degrees then in -3π/10 radians?
![\bf \begin{array}{ccll} degrees&radians\\ \cline{1-2} 180&\pi \\\\ x&-\frac{3\pi }{10} \end{array}\implies \cfrac{180}{x}=\cfrac{\pi }{~~-\frac{3\pi }{10}~~}\implies \cfrac{180}{x}=\cfrac{\frac{\pi}{1} }{~~-\frac{3\pi }{10}~~} \\\\\\ \cfrac{180}{x}=\cfrac{\pi }{1}\cdot \cfrac{10}{-3\pi }\implies \cfrac{180}{x}=-\cfrac{10}{3}\implies 540=-10x\implies \cfrac{540}{-10}=x \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill -54=x~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bccll%7D%20degrees%26radians%5C%5C%20%5Ccline%7B1-2%7D%20180%26%5Cpi%20%5C%5C%5C%5C%20x%26-%5Cfrac%7B3%5Cpi%20%7D%7B10%7D%20%5Cend%7Barray%7D%5Cimplies%20%5Ccfrac%7B180%7D%7Bx%7D%3D%5Ccfrac%7B%5Cpi%20%7D%7B~~-%5Cfrac%7B3%5Cpi%20%7D%7B10%7D~~%7D%5Cimplies%20%5Ccfrac%7B180%7D%7Bx%7D%3D%5Ccfrac%7B%5Cfrac%7B%5Cpi%7D%7B1%7D%20%7D%7B~~-%5Cfrac%7B3%5Cpi%20%7D%7B10%7D~~%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B180%7D%7Bx%7D%3D%5Ccfrac%7B%5Cpi%20%7D%7B1%7D%5Ccdot%20%5Ccfrac%7B10%7D%7B-3%5Cpi%20%7D%5Cimplies%20%5Ccfrac%7B180%7D%7Bx%7D%3D-%5Ccfrac%7B10%7D%7B3%7D%5Cimplies%20540%3D-10x%5Cimplies%20%5Ccfrac%7B540%7D%7B-10%7D%3Dx%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20-54%3Dx~%5Chfill)
Answer:
Z = 3
Step-by-step explanation:
In a normal distribution, the Z score that corresponds with a data point x is calculated using the formula;

For the case given, the z score will be;

Answer:




Step-by-step explanation:
The probability mass function P(X = x) is the probability that X happens x times.
When n trials happen, for each
, the probability mass function is given by:

In which p is the probability that the event happens.
is the permutation of n elements with x repetitions(when there are multiple events happening(like one passes and two not passing)). It can be calculated by the following formula:

The sum of all P(X=x) must be 1.
In this problem
We have 3 trials, so 
The probability that a wafer pass a test is 0.7, so 
Determine the probability mass function of the number of wafers from a lot that pass the test.



