The answer is 3(x-2)(x+2)
Coastal Ocean!
Explanation: It’s important to remember that although the ocean produces at least 50 percent of the oxygen on Earth, roughly the same amount is consumed by marine life. Like animals on land, marine animals use oxygen to breathe, and both plants and animals use oxygen for cellular respiration. Oxygen is also consumed when dead plants and animals decay in the ocean.
This is particularly problematic when algal blooms die and the decomposition process uses oxygen faster than it can be replenished. This can create areas of extremely low oxygen concentrations, or hypoxia. These areas are often called dead zones, because the oxygen levels are too low to support most marine life.
NOAA’s National Centers for Coastal Ocean Science conducts extensive research and forecasting on algal blooms and hypoxia to lessen the harm done to the ocean ecosystem and human environment.
Answer:
The voltage-gated potassium channels associated with an action potential provide an example of what type of membrane transport?
A. Simple diffusion.
B.<u> Facilitated diffusion.
</u>
C. Coupled transport.
D. Active transport.
You are studying the entry of a small molecule into red blood cells. You determine the rate of movement across the membrane under a variety of conditions and make the following observations:
i. The molecules can move across the membrane in either direction.
ii. The molecules always move down their concentration gradient.
iii. No energy source is required for the molecules to move across the membrane.
iv. As the difference in concentration across the membrane increases, the rate of transport reaches a maximum.
The mechanism used to get this molecule across the membrane is most likely:
A. simple diffusion.
<u>B. facilitated diffusion.
</u>
C. active transport.
D. There is not enough information to determine a mechanism.
Carrier proteins - exist in two conformations, altered by high affinity binding of the transported molecule. Moves material in either direction, down concentration gradient (facilitated diffusion). EXAMPLE: GluT1 erythrocyte glucose transporter.
Channel proteins - primarily for ion transport. Form an aqueous pore through the lipid bilayer. May be gated. Moves material in either direction, down concentration gradient (facilitated diffusion). EXAMPLES: Voltage-gated sodium channel, erytrhocyte bicarbonate exchange protein.
This might be helpful... because I don't know anything about facilitated diffusion.
Greenhouse is due to excess of CO2 , Methane gas !! It has both benefits and demerits !!