The change in the water vapors is modeled by the polynomial function c(x). In order to find the x-intercepts of a polynomial we set it equal to zero and solve for the values of x. The resulting values of x are the x-intercepts of the polynomial.
Once we have the x-intercepts we know the points where the graph crosses the x-axes. From the degree of the polynomial we can visualize the end behavior of the graph and using the values of maxima and minima a rough sketch can be plotted.
Let the polynomial function be c(x) = x
² -7x + 10
To find the x-intercepts we set the polynomial equal to zero and solve for x as shown below:
x
² -7x + 10 = 0
Factorizing the middle term, we get:
x
² - 2x - 5x + 10 = 0
x(x - 2) - 5(x - 2) =0
(x - 2)(x - 5)=0
x - 2 = 0 ⇒ x=2
x - 5 = 0 ⇒ x=5
Thus the x-intercept of our polynomial are 2 and 5. Since the polynomial is of degree 2 and has positive leading coefficient, its shape will be a parabola opening in upward direction. The graph will have a minimum point but no maximum if the domain is not specified. The minimum points occurs at the midpoint of the two x-intercepts. So the minimum point will occur at x=3.5. Using x=3.5 the value of the minimum point can be found. Using all this data a rough sketch of the polynomial can be constructed. The figure attached below shows the graph of our polynomial.
Answer:
5
Step-by-step explanation:
The rate of change is the slope
y = 5x
The slope is the constant in front of the x
The constant rate of change is 5
Answer:
x=-2
Step-by-step explanation:
1)
here, we do the left-hand-side
![\bf [sin(x)+cos(x)]^2+[sin(x)-cos(x)]^2=2 \\\\\\\ [sin^2(x)+2sin(x)cos(x)+cos^2(x)]\\\\+~ [sin^2(x)-2sin(x)cos(x)+cos^2(x)] \\\\\\ 2sin^2(x)+2cos^2(x)\implies 2[sin^2(x)+cos^2(x)]\implies 2[1]\implies 2](https://tex.z-dn.net/?f=%5Cbf%20%5Bsin%28x%29%2Bcos%28x%29%5D%5E2%2B%5Bsin%28x%29-cos%28x%29%5D%5E2%3D2%0A%5C%5C%5C%5C%5C%5C%5C%0A%5Bsin%5E2%28x%29%2B2sin%28x%29cos%28x%29%2Bcos%5E2%28x%29%5D%5C%5C%5C%5C%2B~%20%5Bsin%5E2%28x%29-2sin%28x%29cos%28x%29%2Bcos%5E2%28x%29%5D%0A%5C%5C%5C%5C%5C%5C%0A2sin%5E2%28x%29%2B2cos%5E2%28x%29%5Cimplies%202%5Bsin%5E2%28x%29%2Bcos%5E2%28x%29%5D%5Cimplies%202%5B1%5D%5Cimplies%202)
2)
here we also do the left-hand-side
![\bf \cfrac{2-cos^2(x)}{sin(x)}=csc(x)+sin(x) \\\\\\ \cfrac{2-[1-sin^2(x)]}{sin(x)}\implies \cfrac{2-1+sin^2(x)}{sin(x)}\implies \cfrac{1+sin^2(x)}{sin(x)} \\\\\\ \cfrac{1}{sin(x)}+\cfrac{sin^2(x)}{sin(x)}\implies csc(x)+sin(x)](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B2-cos%5E2%28x%29%7D%7Bsin%28x%29%7D%3Dcsc%28x%29%2Bsin%28x%29%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B2-%5B1-sin%5E2%28x%29%5D%7D%7Bsin%28x%29%7D%5Cimplies%20%5Ccfrac%7B2-1%2Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%5Cimplies%20%5Ccfrac%7B1%2Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B1%7D%7Bsin%28x%29%7D%2B%5Ccfrac%7Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%5Cimplies%20csc%28x%29%2Bsin%28x%29)
3)
here, we do the right-hand-side
Answer:
128 degrees because it is a suplimentary angle which adds up to be 180...so you subtract 180-52 and you get 128