Answer:
0
Step-by-step explanation:
The five smallest prime numbers are 2, 3, 5, 7 and 11.
2 × 3 × 5 × 7 × 11
= 2310
Divide by 42.
2310/42
= 55, Remainder 0
Answer:
Around 5.5 square meters
Step-by-step explanation:
You can start by finding the area of the segment. Since the rest of the circle that is not in the segment is 240 degrees, the segment is 120 degrees or a third of the circle. You can therefore find the area of that segment with the formula
square meters. Now, you need to find the area of the triangle inside the sector. This is more difficult than last time, because it is not a 90 degree angle. However, you can solve this by dividing this triangle into two 30-60-90 triangles, which you know how to find the ratio of sides for. In a 30-60-90 triangle, the hypotenuse is twice the length of the smallest leg, and the larger leg is
times larger than the smaller leg. In this case, these dimensions are a base of
for the smaller leg and
for the larger leg, or the base. Using the triangle area formula and multiplying by 2 (because remember, we divided the big triangle in half), you get
square meters. Subtracting this from the area of the segment, you get about 5.5 square meters. Hope this helps!
<h3>
Answer: 0.5</h3>
This is equivalent to the fraction 1/2
==============================================================
Explanation:
The distance from A to B is 3 units. We can count out the spaces, or subtract the x coordinates of the two points and apply absolute value.
|A-B| = |-5-(-8)| = |-5+8| = |3| = 3
or
|B-A| = |-8-(-5)| = |-8+5| = |-3| = 3
We can say that segment AB is 3 units long.
--------------------------
The distance from A' to B' is 1.5 units because...
|A'-B'| = |-2.5-(-4)| = |-2.5+4| = |1.5| = 1.5
or
|B'-A'| = |-4-(-2.5)| = |-4+2.5| = |-1.5| = 1.5
The absolute values ensure the distance is never negative.
We can say A'B' = 1.5
---------------------------
Now divide the lengths of A'B' over AB to get the scale factor k
k = (A'B')/(AB)
k = (1.5)/(3)
k = 0.5
0.5 converts to the fraction 1/2.
The smaller rectangle A'B'C'D' has side lengths that are exactly 1/2 as long compared to the side lengths of ABCD.
Here you go. I hope this will help