he volume of the solid under a surface
z
=
f
(
x
,
y
)
and above a region D is given by the formula
∫
∫
D
f
(
x
,
y
)
d
A
.
Here
f
(
x
,
y
)
=
6
x
y
. The inequalities that define the region D can be found by making a sketch of the triangle that lies in the
x
y
−
plane. The bounding equations of the triangle are found using the point-slope formula as
x
=
1
,
y
=
1
and
y
=
−
x
3
+
7
3
.
Here is a sketch of the triangle:
Intersecting Region
The inequalities that describe D are given by the sketch as:
1
≤
x
≤
4
and
1
≤
y
≤
−
x
3
+
7
3
.
Therefore, volume is
V
=
∫
4
1
∫
−
x
3
+
7
3
1
6
x
y
d
y
d
x
=
∫
4
1
6
x
[
y
2
2
]
−
x
3
+
7
3
1
d
x
=
3
∫
4
1
x
[
y
2
]
−
x
3
+
7
3
1
d
x
=
3
∫
4
1
x
[
49
9
−
14
x
9
+
x
2
9
−
1
]
d
x
=
3
∫
4
1
40
x
9
−
14
x
2
9
+
x
3
9
d
x
=
3
[
40
x
2
18
−
14
x
3
27
+
x
4
36
]
4
1
=
3
[
(
640
18
−
896
27
+
256
36
)
−
(
40
18
−
14
27
+
1
36
)
]
=
23.25
.
Volume is
23.25
.
Math is basically useless rn but it’s the last week until Christmas break just 2 days left finish your math so your not stuck doing it later!! and enjoy your time off as much as you can!
Given:
The minimum and maximum distance that the dog may be from the house can be found by using the equation:

To find:
The minimum and maximum distance that the dog may be from the house.
Solution:
We have,

It can be written as:

Adding 500 on both sides, we get

Now,
and 
and 
The minimum distance is 492 meters and the maximum distance is 508 meters.
Therefore, the correct option is C.
Answer: b = −2
Step-by-step explanation: