Answer:
Missing number is 288, and the rule is +96
Step-by-step explanation:
First subtract 96 from 192, which is 96
then add that to 192 and the missing value is 288
you should also add 96 to 288 just to make sure it gets you to the last number which is 384.
1) Create was we already know in the equation. 16=-7(-3)+b. (This is using the initial equation of y=mx+b.)
2) Simplify and solve for b: 16=21+b = -5=b
3) Replug your be value into your equation: y=-7x-5.
Answer
y=-7x-5
Words: y equals negative seven x, minus five.
let's firstly conver the mixed fractions to improper fractions and then get their product.
![\stackrel{mixed}{4\frac{1}{2}}\implies \cfrac{4\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{9}{2}} ~\hfill \stackrel{mixed}{2\frac{1}{2}}\implies \cfrac{2\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{5}{2}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{9}{2}\cdot \cfrac{5}{2}\cdot 6\implies \cfrac{270}{2}\implies 135](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B4%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B4%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D%20~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B5%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B9%7D%7B2%7D%5Ccdot%20%5Ccfrac%7B5%7D%7B2%7D%5Ccdot%206%5Cimplies%20%5Ccfrac%7B270%7D%7B2%7D%5Cimplies%20135)
hmmm I take it that one can write that mixed as
.
is valid, not that it makes any sense.
You have 9n and -7 in total so the answer is 9n-7. You add up all the numbers and then add up the numbers with n attached to them