Answer:
y is greater than or equal to 0.5/2.5x-1/2
y is greater than -2x
Step-by-step explanation:
Answer:
t = √1.5/g
Step-by-step explanation:
1/2gt^2 = 3
Divide both sides by 1/2
gt^2 = 1.5
Divide both sides by g
t^2 = 1.5/g
Square root both sides
t = √1.5/g
Answer:
n = 8
Step-by-step explanation:
-2n - 13 = -3n - 5
-2n + 3n = -5 + 13
n = 8
Hope this helps. Have a nice day!
Answer:
Horizontal distance = 0 m and 6 m
Step-by-step explanation:
Height of a rider in a roller coaster has been defined by the equation,
y = 
Here x = rider's horizontal distance from the start of the ride
i). 

![=\frac{1}{3}[x^{2}-2(3x)+9-9+24]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%5Bx%5E%7B2%7D-2%283x%29%2B9-9%2B24%5D)
![=\frac{1}{3}[(x^{2}-2(3x)+9)+15]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%5B%28x%5E%7B2%7D-2%283x%29%2B9%29%2B15%5D)
![=\frac{1}{3}[(x-3)^2+15]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%5B%28x-3%29%5E2%2B15%5D)

ii). Since, the parabolic graph for the given equation opens upwards,
Vertex of the parabola will be the lowest point of the rider on the roller coaster.
From the equation,
Vertex → (3, 5)
Therefore, minimum height of the rider will be the y-coordinate of the vertex.
Minimum height of the rider = 5 m
iii). If h = 8 m,


(x - 3)² = 9
x = 3 ± 3
x = 0, 6 m
Therefore, at 8 m height of the roller coaster, horizontal distance of the rider will be x = 0 and 6 m