A scalene triangle is a triangle that has 3 sides that are all different lengths.
Let these letters represent the problem:
a = 8.7
b = side 2
c = side 3
P = 54.6
To find the perimeter, we just need to add all the sides [ P = a + b + c ]
So, put what we have in the formula above.
54.6 = 8.7 + b + c
Best of Luck!
Answer:10
Step-by-step explanation:
Answer:
A
Step-by-step explanation:
1. Get 15% of 870:
First, get 10 percent of 870, which is 87, then half that, which is 43.5
Get the 87 and add the 43.5 on it, to get the full 15%, you end up with $130.5, which is the monthly payment.
(Only problem is that im pretty sure you put an extra 0, because if you just wrote 87 dollar's then you would've got 13.05, the actual answer, but if you add an extra 0 then you end up with 130$, just to let you know.)
Answer:
Generally the barrier width is 
Step-by-step explanation:
From the question we are told that
The tunneling probability required is 
The barrier height is 
The electron energy is 
Generally the wave number is mathematically represented as
![k = \sqrt{ \frac{2 * m [V_o - E]}{\= h^2} }](https://tex.z-dn.net/?f=k%20%20%3D%20%20%5Csqrt%7B%20%5Cfrac%7B2%20%2A%20m%20%5BV_o%20-%20E%5D%7D%7B%5C%3D%20h%5E2%7D%20%7D)
Here m is the mass of the electron with the value 
h is is know as h-bar and the value is 
So
![k = \sqrt{ \frac{2 * 9.11 *10^{-31 } [0.4 - 0.04] * 1.6*10^{-19}}{[1.054*10^{-34}^2]} }](https://tex.z-dn.net/?f=k%20%20%3D%20%20%5Csqrt%7B%20%5Cfrac%7B2%20%2A%209.11%20%2A10%5E%7B-31%20%7D%20%5B0.4%20-%200.04%5D%20%2A%201.6%2A10%5E%7B-19%7D%7D%7B%5B1.054%2A10%5E%7B-34%7D%5E2%5D%7D%20%7D)
=> 
Generally the tunneling probability is mathematically represented as
![T = 16 * \frac{E}{V_o } * [1 - \frac{E}{V_o} ] * e^{-2 * k * a}](https://tex.z-dn.net/?f=T%20%20%3D%2016%20%2A%20%5Cfrac%7BE%7D%7BV_o%20%7D%20%20%2A%20%5B1%20-%20%5Cfrac%7BE%7D%7BV_o%7D%20%5D%20%2A%20e%5E%7B-2%20%2A%20k%20%2A%20a%7D)
So
![1.0 *10^{-5} = 16 * \frac{0.04}{0.4 } * [1 - \frac{0.04}{0.4} ] * e^{-2 * 3.0736 *10^{9} * a}](https://tex.z-dn.net/?f=1.0%20%2A10%5E%7B-5%7D%20%3D%2016%20%2A%20%5Cfrac%7B0.04%7D%7B0.4%20%7D%20%20%2A%20%5B1%20-%20%5Cfrac%7B0.04%7D%7B0.4%7D%20%5D%20%2A%20e%5E%7B-2%20%2A%203.0736%20%2A10%5E%7B9%7D%20%2A%20a%7D)
=> 
Taking natural log of both sides
![ln[6.944*10^{-6}] = -2 * 3.0736 *10^{9} * a}](https://tex.z-dn.net/?f=ln%5B6.944%2A10%5E%7B-6%7D%5D%20%3D%20-2%20%2A%203.0736%20%2A10%5E%7B9%7D%20%2A%20a%7D)
=> 
=> 