Answer:
There may be 1 or 3 tricycles in the parking lot.
Step-by-step explanation:
Since at any point in time, there could be bicycles, tricycles, and cars in the school parking lot, and today, there are 53 wheels in total, if there are 15 bicycles, tricycles, and cars in total, to determine how many tricycles could be in the parking lot, the following calculation must be performed:
13 x 4 + 1 x 3 + 1 x 2 = 57
11 x 4 + 1 x 3 + 3 x 2 = 53
10 x 4 + 3 x 3 + 2 x 2 = 53
8 x 4 + 5 x 3 + 2 x 2 = 51
10 x 2 + 1 x 3 + 4 x 4 = 39
9 x 3 + 1 x 2 + 5 x 4 = 49
Therefore, there may be 1 or 3 tricycles in the parking lot.
Answer:
a) 0.82
b) 0.18
Step-by-step explanation:
We are given that
P(F)=0.69
P(R)=0.42
P(F and R)=0.29.
a)
P(course has a final exam or a research paper)=P(F or R)=?
P(F or R)=P(F)+P(R)- P(F and R)
P(F or R)=0.69+0.42-0.29
P(F or R)=1.11-0.29
P(F or R)=0.82.
Thus, the the probability that a course has a final exam or a research paper is 0.82.
b)
P( NEITHER of two requirements)=P(F' and R')=?
According to De Morgan's law
P(A' and B')=[P(A or B)]'
P(A' and B')=1-P(A or B)
P(A' and B')=1-0.82
P(A' and B')=0.18
Thus, the probability that a course has NEITHER of these two requirements is 0.18.
Answer:
23.92
Step-by-step explanation:
You can round 2.99 to 3 and do 3x8 mentally then subtract 8 cents ¯\_(ツ)_/¯
The surface area of a sphere is given by

We deduce

So, in your case, the radius is

The volume of a sphere is given by

So, we have

It would be 4.9%, hope this helps :)