5x - 2y + 1z = 8 ⇒ 5x - 2y + 1z = 8
-9x + 2y + 2z = 5 ⇒ -9x + 2y + 2z = 5
-9x - 2y - 5z = 4 -4x + 3z = 13
5x - 2y + 1z = 8
-9x + 2y + 2z = 5 ⇒ -9x + 2y + 2z = 5
-9z - 2y - 5z = 4 ⇒ -9x - 2y - 5z = 4
-18x - 3z = 9
-4x + 3z = 13
-18x - 3z = 9
-22x = 22
-22 -22
x = -1
-18x - 3z = 9
-18(-1) - 3z = 9
18 - 3z = 9
- 18 - 18
-3z = -9
-3 -3
z = 3
5x - 2y + z = 8
5(-1) - 2y + 3 = 8
-5 - 2y + 3 = 8
-2y - 5 + 3 = 8
-2y - 2 = 8
+ 2 + 2
-2y = 10
-2 -2
y = -5
(x, y, z) = (-1, -5, 3)
Step-by-step explanation:
5x-6+7x+18=180
12x=180+6-18
12x=168
168÷12=14
X=14
for y
3y+11=7x+18(7×14+18)
3y+11=116
3y=116-11
3y=105
y= 35
Hello,
any point equidistant from the ends of a segment belongs to the perpendicular bisector of the segment.
|AD|=|BD| and |AC|=|BC|
<span>Simplifying
w + -11 = 1.3
Reorder the terms:
-11 + w = 1.3
Solving
-11 + w = 1.3
Solving for variable 'w'.
Move all terms containing w to the left, all other terms to the right.
Add '11' to each side of the equation.
-11 + 11 + w = 1.3 + 11
Combine like terms: -11 + 11 = 0
0 + w = 1.3 + 11
w = 1.3 + 11
Combine like terms: 1.3 + 11 = 12.3
w = 12.3
Simplifying
w = 12.3 <--- (Answer)
Happy studying ^-^</span>