Answer:
advanced math shouldnt scare you its easy as pi
Step-by-step explanation:
45/15=3, so every 3 students must clean 1 mile. 1/3=0.333 forever. Hope this helps!!!
Answer:
Step-by-step explanation:
<u>Given vertices of a triangle:</u>
- A(4, 12), B(14, 6), and C(-6, 2)
Let the circumcenter is point M(x, y)
We know that the circumcenter is equidistant from each of the vertices.
<u>Use distance formula:</u>
- AM = √(x - 4)² + (y - 12)²
- BM = √(x - 14)² + (y - 6)²
- CM = √(x + 6)² + (y - 2)²
<u>All three distances are equal:</u>
- AM = BM = CM ⇒ AM² = BM² = CM² ⇒
- (x - 4)² + (y - 12)² = (x - 14)² + (y - 6)² = (x + 6)² + (y - 2)²
<u>Square of each:</u>
- AM² = x² - 8x + 16 + y² - 24y + 144 = x² + y² - 8x - 24y + 160
- BM² = x² - 28x + 196 + y² - 12y + 36 = x² + y² - 28x - 12y + 232
- CM² = x² + 12x + 36 + y² - 4y + 4 = x² + y² + 12x - 4y + 40
<u>Comparing the squares, we get following system:</u>
- -8x- 24y + 160 = -28x - 12y + 232 ⇒ 20x - 12y = 72 ⇒ 5x - 3y = 18
- - 8x - 24y + 160 = 12x - 4y + 40 ⇒ 20x + 20y = 120 ⇒ x + y = 6
<u>Solve by substitution, x = 6 - y:</u>
- 5(6 - y) - 3y = 18
- 30 - 8y = 18
- 8y = 12
- y = 1.5
<u>Find x:</u>
So the circumcenter is M(4.5, 1.5)
Answer:
Step-by-step explanation:
Probability of good given properly adjusted P(G/P) = .5
Probability of bad given properly adjusted P(B/P) = .5
Probability of inappropriately adjusted P(I ) = .1
Probability of properly adjusted P(P) = .4
Probability of good given inappropriately adjusted P( G/I ) = .25
Probability of bad given inappropriately adjusted P(B/I ) = .75
P( G ) = P(G/P) x P(P) + P( G/I ) x P(I )
P(P/G) = P(G/P) x P(P) / P(G/P) x P(P) + P( G/I ) x P(I )
= .5 x .4 / .5 x .4 + .25 x .1
= .20 / .20 + .025
.20 / .225
20 / 22.5
= 4 / 4.5 .
= 8 / 9 .
Answer:
1.33333333333
, simplified to 1.3
Step-by-step explanation:
Our equation is 2 multiplied by 2 over 3.
Fractions mean division.
So, let's multiply 2 by 2/3.
We get 1.33333333333
That's too long! What can we simplify it to?
1.3
Hope this helped!
- Melanie