Answer:
![\left[\begin{array}{ccc}4&19&-5\\7&0&-14\end{array}\right] + \left[\begin{array}{ccc}-8&7&0\\-1&17&6\end{array}\right] = \left[\begin{array}{ccc}-4&26&-5\\6&17&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%2619%26-5%5C%5C7%260%26-14%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%267%260%5C%5C-1%2617%266%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%2626%26-5%5C%5C6%2617%26-8%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
To add two matrices you just need to add the corresponding entries together. In this case, we have that:
![\left[\begin{array}{ccc}4&19&-5\\7&0&-14\end{array}\right] + \left[\begin{array}{ccc}-8&7&0\\-1&17&6\end{array}\right]=\left[\begin{array}{ccc}4-8&19+7&-5 + 0\\7-1&0+17&-14+6\end{array}\right] = \left[\begin{array}{ccc}-4&26&-5\\6&17&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%2619%26-5%5C%5C7%260%26-14%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%267%260%5C%5C-1%2617%266%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4-8%2619%2B7%26-5%20%2B%200%5C%5C7-1%260%2B17%26-14%2B6%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%2626%26-5%5C%5C6%2617%26-8%5Cend%7Barray%7D%5Cright%5D)
Then, we conclude that the sume of the two matrices is:
![\left[\begin{array}{ccc}4&19&-5\\7&0&-14\end{array}\right] + \left[\begin{array}{ccc}-8&7&0\\-1&17&6\end{array}\right] = \left[\begin{array}{ccc}-4&26&-5\\6&17&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%2619%26-5%5C%5C7%260%26-14%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%267%260%5C%5C-1%2617%266%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%2626%26-5%5C%5C6%2617%26-8%5Cend%7Barray%7D%5Cright%5D)
Answer:
Discrete
Step-by-step explanation:
Since interest is not added all the time but only a set number of times a year both loans would be best modeled by a discrete relationship.
The answer would be 4 over 7
this is because there were 8 cards in total to begin with but she removes one leaving only 7; that would result in the bottom number because it is the total
then the top number would be the amount of rose cards left so in this case 4