When there isn't an outlier, the mean is the best measure of central tendency, because it gives you a more arithmetic answer of the true center since all numbers are included in the equation rather than at max 2 numbers in the middle of the list.
Answer:
∫ C ( y + e√x) dx + ( 2x + cosy² ) dy = 1/3
Step-by-step explanation: See Annex
Green Theorem establishes:
∫C ( Mdx + Ndy ) = ∫∫R ( δN/dx - δM/dy ) dA
Then
∫ C ( y + e√x) dx + ( 2x + cosy² ) dy
Here
M = 2x + cosy² δM/dy = 1
N = y + e√x δN/dx = 2
δN/dx - δM/dy = 2 - 1 = 1
∫∫(R) dxdy ∫∫ dxdy
Now integration limits ( see Annex)
dy is from x = y² then y = √x to y = x² and for dx
dx is from 0 to 1 then
∫ dy = y | √x ; x² ∫dy = x² - √x
And
∫₀¹ ( x² - √x ) dx = x³/3 - 2/3 √x |₀¹ = 1/3 - 0
∫ C ( y + e√x) dx + ( 2x + cosy² ) dy = 1/3
Step-by-step explanation:
l x 3 = c
k + 5 = l
(c + l + k) x 2 = 25
c = 33
l = 11
k = 6
Answer:
Linear
Step-by-step explanation:
Find the degree of the equation to determine if linear.
The answer would be C and E