Refer to the diagram shown below.
The exit for Freestone is built midway between Roseville and Edgewood,
therefore the distance from O to the new exit is
(1/2)*(33+55) = 44 mi.
Let x = distance from Midtown to the new exit.
Because the distance from O to the new exit is equal to (x + 17), therefore
x + 17 = 44
x = 44 - 17 = 27 mi.
Answer:
When the new exit is built, the distance from the exit for Midtown to the exit for Freestone will be 27 miles.
I think that the answer is B. I tried to read more about the question to understand it more but got nothing out of it.
Answer:
14
Step-by-step explanation:
-3u = 4+5
-3u = 9
u = -3
7u + 7
7(u +1) = 7(-3+1)
7(-2)
14
Step-by-step explanation:
The answer is is the picture..
Answer:
One edge of the cube is 5 cm, one edge of the square is 8 cm, so the edge of the cube is 3 cm shorter than the edge of the square.
Step-by-step explanation:
<h3 /><h3>The volume of the cube is found by the formula </h3><h2>V = s³, </h2><h3>where s is the side length (called the edge in this problem)</h3><h3>Since V = 125 cm³, we can take the cube root of 125 to find the edge length.</h3><h3>The cube root of 125 is 5, ( 5³ = 125)</h3><h3>So the edge of the cube is 5 cm</h3><h3 /><h3>The are of a square is found by the formula </h3><h2>A = s² , </h2><h3>where s is the side length (called the edge in this problem) </h3><h3>Since A = 64 cm², we can take the square root of 64 to find the edge length.</h3><h3>The square root of 64 is 8 (8² = 84)</h3><h3>So the edge of the square is 8cm</h3><h3 /><h3>Comparing the two edges tells us that the edge of the cube is 3cm shorter than the edge of the square.</h3>