Answer:
There are about 5,357 bees in the hive
Step-by-step explanation:
Let
x -----> the number of bees that leave the hive in one minute
y -----> the approximate number of bees in a hive
we know that
The formula to calculate the approximate number of bees in a hive is equal to

For x=25
substitute


therefore
There are about 5,357 bees in the hive
Answer:
![\displaystyle y' = \frac{-2}{x \ln (10)[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B-2%7D%7Bx%20%5Cln%20%2810%29%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]: ![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Quotient Rule]: ![\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify.</em>

<u>Step 2: Differentiate</u>
- [Function] Derivative Rule [Quotient Rule]:
![\displaystyle y' = \frac{[\log (x) - 2][\log (x)]' - [\log (x) - 2]'[\log (x)]}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%5Clog%20%28x%29%20-%202%5D%5B%5Clog%20%28x%29%5D%27%20-%20%5B%5Clog%20%28x%29%20-%202%5D%27%5B%5Clog%20%28x%29%5D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Rewrite [Derivative Rule - Addition/Subtraction]:
![\displaystyle y' = \frac{[\log (x) - 2][\log (x)]' - [\log (x)' - 2'][\log (x)]}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%5Clog%20%28x%29%20-%202%5D%5B%5Clog%20%28x%29%5D%27%20-%20%5B%5Clog%20%28x%29%27%20-%202%27%5D%5B%5Clog%20%28x%29%5D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Logarithmic Differentiation:
![\displaystyle y' = \frac{[\log (x) - 2]\frac{1}{\ln (10)x} - [\frac{1}{\ln (10)x} - 2'][\log (x)]}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%5Clog%20%28x%29%20-%202%5D%5Cfrac%7B1%7D%7B%5Cln%20%2810%29x%7D%20-%20%5B%5Cfrac%7B1%7D%7B%5Cln%20%2810%29x%7D%20-%202%27%5D%5B%5Clog%20%28x%29%5D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Derivative Rule [Basic Power Rule]:
![\displaystyle y' = \frac{[\log (x) - 2]\frac{1}{\ln (10)x} - \frac{1}{\ln (10)x}[\log (x)]}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%5Clog%20%28x%29%20-%202%5D%5Cfrac%7B1%7D%7B%5Cln%20%2810%29x%7D%20-%20%5Cfrac%7B1%7D%7B%5Cln%20%2810%29x%7D%5B%5Clog%20%28x%29%5D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Simplify:
![\displaystyle y' = \frac{\frac{\log (x) - 2}{\ln (10)x} - \frac{\log (x)}{\ln (10)x}}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5Cfrac%7B%5Clog%20%28x%29%20-%202%7D%7B%5Cln%20%2810%29x%7D%20-%20%5Cfrac%7B%5Clog%20%28x%29%7D%7B%5Cln%20%2810%29x%7D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Simplify:
![\displaystyle y' = \frac{\frac{-2}{\ln (10)x}}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5Cfrac%7B-2%7D%7B%5Cln%20%2810%29x%7D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Rewrite:
![\displaystyle y' = \frac{-2}{x \ln (10)[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B-2%7D%7Bx%20%5Cln%20%2810%29%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Answer: 72
Step-by-step explanation:
Prism area = b * h
base = 4 * 3 = 12
height = 6
12 * 6 = 72
Answer: The length of BC ≈ 12.4 cm
Step-by-step explanation:
The first thing we need to do is to find the length of BD which we can solve for with the tangent of 20° which is the opposite side over the adjacent side.
We get tan20° = BD/8.
Solve for BD and you get BD = 8tan20°.
Now we will need to solve for the length of CD which we can get from the tangent of 40°.
We get tan40° = 8/CD
Solve for CD and you get CD = 8/tan40°.
Now that we have the lengths of BD and DC, we can simply add them together to get the length of BC.
(8tan20°) + (8/tan40°) ≈ 12.4 cm