we know the segment QP is an angle bisector, namely it divides ∡SQR into two equal angles, thus ∡1 = ∡2, and ∡SQR = ∡1 + ∡2.
![\bf \begin{cases} \measuredangle SQR = \measuredangle 1 + \measuredangle 2\\\\ \measuredangle 2 = \measuredangle 1 = 5x-7 \end{cases}\qquad \qquad \stackrel{\measuredangle SQR}{7x+13} = (\stackrel{\measuredangle 1}{5x-7})+(\stackrel{\measuredangle 2}{5x-7}) \\\\\\ 7x+13 = 10x-14\implies 13=3x-14\implies 27=3x \\\\\\ \cfrac{27}{3}=x\implies 9=x \\\\[-0.35em] ~\dotfill\\\\ \measuredangle SQR = 7(9)+13\implies \measuredangle SQR = 76](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20%5Cmeasuredangle%20SQR%20%3D%20%5Cmeasuredangle%201%20%2B%20%5Cmeasuredangle%202%5C%5C%5C%5C%20%5Cmeasuredangle%202%20%3D%20%5Cmeasuredangle%201%20%3D%205x-7%20%5Cend%7Bcases%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Cmeasuredangle%20SQR%7D%7B7x%2B13%7D%20%3D%20%28%5Cstackrel%7B%5Cmeasuredangle%201%7D%7B5x-7%7D%29%2B%28%5Cstackrel%7B%5Cmeasuredangle%202%7D%7B5x-7%7D%29%20%5C%5C%5C%5C%5C%5C%207x%2B13%20%3D%2010x-14%5Cimplies%2013%3D3x-14%5Cimplies%2027%3D3x%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B27%7D%7B3%7D%3Dx%5Cimplies%209%3Dx%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cmeasuredangle%20SQR%20%3D%207%289%29%2B13%5Cimplies%20%5Cmeasuredangle%20SQR%20%3D%2076)
Answer:
≈ 30.63 cm²
Step-by-step explanation:
The shaded area is calculated by subtracting the area of the inner circle from the area of the outer circle.
outer circle has radius = 8 ÷ 2 = 4 and inner circle has radius = 5 ÷ 2 = 2.5
shaded area = πr₁² - πr₂² (r₁ is outer and r₂ is inner )
A = π (4² - 2.5²)
= π(16 - 6.25) = 9.75π ≈ 30.63 cm²
We will write it as a fraction in ordet to solve, that is:

We then operate as follows:

We have this, since 1 integer will be equal as a numerator divided by a denominator with equal values. Examples 1 = 2/2, 1 = 45/45, ...
Answer:
- increasing: (-∞, 0)
- decreasing: (0, ∞)
Step-by-step explanation:
The function goes up to the right until it gets to the vertex at x=0. Then it goes down to the right. That is, it is ...
increasing from -∞ to 0 (not including 0)
decreasing from 0 to +∞ (not including 0)
_____
At x=0, the function is neither increasing nor decreasing, so x=0 is not part of either interval.
Answer:
D
Step-by-step explanation:
add up all the inside angels, you'll get 122, subtract that from the total area of the triangle which is 180. you will have 58 for your missong inside triangle. the outside line makes 180 with the angel we just found, so subtract 58 from 180 and you get 122. check out Khan Academy for help.