1. true
2. false
3. true
4. false
5. true
A.) To find the maximum height, we can take the derivative of h(t). This will give us the rate at which the horse jumps (velocity) at time t.
h'(t) = -32t + 16
When the horse reaches its maximum height, its position on h(t) will be at the top of the parabola. The slope at this point will be zero because the line tangent to the peak of a parabola is a horizontal line. By setting h'(t) equal to 0, we can find the critical numbers which will be the maximum and minimum t values.
-32t + 16 = 0
-32t = -16
t = 0.5 seconds
b.) To find out if the horse can clear a fence that is 3.5 feet tall, we can plug 0.5 in for t in h(t) and solve for the maximum height.
h(0.5) = -16(0.5)^2 + 16(-0.5) = 4 feet
If 4 is the maximum height the horse can jump, then yes, it can clear a 3.5 foot tall fence.
c.) We know that the horse is in the air whenever h(t) is greater than 0.
-16t^2 + 16t = 0
-16t(t-1)=0
t = 0 and 1
So if the horse is on the ground at t = 0 and t = 1, then we know it was in the air for 1 second.
The slope of a line is always zero because the line does not move up or down on the y-axis.
Answer:
Its either 300 or 315
Step-by-step explanation:
Mainly because 20 ×15= 300 but the triangles on the side, I can't figure it out. I eliminated 82 and 420, 420 mainly because I got it wrong and 82 doesn't make sense.