Use this systems of equations to solve:
x = first antifreeze
y = second antifreeze

Isolate y.
x + y = 15
Subtract x from both sides.
y = -x + 15
Substitute y into the other equation.
.2x + .12(-x + 15) = .18(15)
Simplify.
.2x - .12x + 1.8 = 2.7
Subtract 1.8 from both sides.
.08x = .9
Divide both sides by .08
x = 11.25
Substitute x in the equation that we isolated y in.
y = -11.25 + 15
y = 3.75
11.25 L of the first antifreeze and 3.75 L of the second.
Answer:
-14y^2-154y
Step-by-step explanation:
-14y(y+11)
Distribute
-14y*y + -14y*11
-14y^2-154y
Answer:
Step-by-step explanation:
4 g.
c=42
a=b=d
a+b+42=180
a+a=180-42
2a=138
a=138/2=69
a=69
b=69
c=42
d=69
5a.
a=30
angle O=180-(a+30)=180-(30+30)=180-60=120°
d=80
angle O=180-(d+80))=180-(80+80)=180-160=20°
central angle O of middle triangle=180-(120+20)=180-140=40°
b=c
b+c+40=180
b+b=180-40
2b=140
b=140/2=70
b=70°
c=70°