Answer:
I assume you know Arithmetic Progression .
so, we have to find the first and last 4-digit number divisible by 5
first = 1000 , last = 9990
we have a formula,
= a + (n-1)d
here,
is the last 4-digit number divisible by 5.
n is the number of 4-digit even numbers divisible by 5
d is the common difference between the numbers, which is 10 in this case
a is the first 4-digit number divisible by 5
9990 = 1000 + (n-1)*10
899 = n-1
n = 900
Hence, there are 900 4-digit even numbers divisible by 5
Answer:
is there a picture?
Step-by-step explanation:
Answer:
6
7
8
10
Step-by-step explanation:
you have to remove // to calculate
Answer:
TRUE
Step-by-step explanation:
A quadratic equation can be found that will go through any three distinct points that ...
- satisfy the requirements for a function
- are not on the same line
_____
The key word here is "may." You will not be able to find a quadratic intersecting the three points if they do not meet both requirements above.