Check the picture below.
so the perimeter of the kite is x+x+y+y, namely 2x + 2y.
![\bf \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies c=\sqrt{a^2+b^2} \qquad \begin{cases} c=\stackrel{hypotenuse}{x}\\ a=\stackrel{adjacent}{8}\\ b=\stackrel{opposite}{15}\\ \end{cases} \\\\\\ x=\sqrt{8^2+15^2}\implies x=\sqrt{289}\implies \boxed{x=17} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20c%3D%5Csqrt%7Ba%5E2%2Bb%5E2%7D%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3D%5Cstackrel%7Bhypotenuse%7D%7Bx%7D%5C%5C%20a%3D%5Cstackrel%7Badjacent%7D%7B8%7D%5C%5C%20b%3D%5Cstackrel%7Bopposite%7D%7B15%7D%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20x%3D%5Csqrt%7B8%5E2%2B15%5E2%7D%5Cimplies%20x%3D%5Csqrt%7B289%7D%5Cimplies%20%5Cboxed%7Bx%3D17%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \begin{cases} c=\stackrel{hypotenuse}{y}\\ a=\stackrel{adjacent}{8}\\ b=\stackrel{opposite}{4}\\ \end{cases}\implies y=\sqrt{8^2+4^2}\implies y=\sqrt{80}\implies \boxed{y\approx 8.94} \\\\[-0.35em] ~\dotfill\\\\ 2x+2y\implies 2(17)+2(8.94)\implies 51.88\implies \stackrel{\textit{rounded up more}}{51.9}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20c%3D%5Cstackrel%7Bhypotenuse%7D%7By%7D%5C%5C%20a%3D%5Cstackrel%7Badjacent%7D%7B8%7D%5C%5C%20b%3D%5Cstackrel%7Bopposite%7D%7B4%7D%5C%5C%20%5Cend%7Bcases%7D%5Cimplies%20y%3D%5Csqrt%7B8%5E2%2B4%5E2%7D%5Cimplies%20y%3D%5Csqrt%7B80%7D%5Cimplies%20%5Cboxed%7By%5Capprox%208.94%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%202x%2B2y%5Cimplies%202%2817%29%2B2%288.94%29%5Cimplies%2051.88%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Brounded%20up%20more%7D%7D%7B51.9%7D)
144 < 165 < 169
sqrt (144) < sqrt(165) < sqrt (169)
12< sqrt(165) < 13
C) It lies between 12 and 13 on a number line.
Choice C
The correct answer would be -3/8 or in decimal form -0.375 :)
Answer:
4) 50,000
5) 900,000
Step-by-step explanation:
In Front end rounding what we do is we focus on first two digit of the number if the second digit number is greater than or equal to 5 we add the first digit by 1.
4) 50,987
here we can clearly see that the first two digit is 50 and second digit is not equal to 5 then rounding will be equal to 50,000.
5) 851,004
here we can clearly see that the first two digit is 85 and second digit is equal to 5 then we will round it 8+1=9
hence rounded number will be 900,000
Units because without units a number is meaningless and serves no purpose