Answer: 4.5
Step-by-step explanation:
do the numbers that are in parentheses first which is 2+6=8 next is 5+3=8 then add both ur answers together then divide that by 4 which should equal 4.5
-2/3x+3/7=0.5
-2/3x+3/7=5/10
-2/3x+3/7=1/2
-42 x 2x +6 x 3=21
-28x+18=21
-28x=21-18
-28x=3
x=-3/28
This question is very oddly worded. The domain is the set of x-values, but this is a set of (x,y) ordered pairs.
I'm reading this question as "Here's a function, { (1,5), (2,1), (-1,-7) }. If this is reflected over the x-axis, what's the range?"
Assuming that is the question that is meant to be asked, reflecting a function over the x-axis will just change the signs of the y-values.
(1,5) -> (1,–5)
(2,1) -> (2,–1)
(-1,-7) -> (-1,+7)
I'd pick the third option.
Answer:
Step-by-step explanation:
Given the equation
Sin(5x) = ½
5x = arcSin(½)
5x = 30°
Then,
The general formula for sin is
5θ = n180 + (-1)ⁿθ
Divide through by 5
θ = n•36 + (-1)ⁿ30/5
θ = 36n + (-1)ⁿ6
The range of the solution is
0<θ<2π I.e 0<θ<360
First solution
When n = 0
θ = 36n + (-1)ⁿθ
θ = 0×36 + (-1)^0×6
θ = 6°
When n = 1
θ = 36n + (-1)ⁿ6
θ = 36-6
θ = 30°
When n = 2
θ = 36n + (-1)ⁿ6
θ = 36×2 + 6
θ = 78°
When n =3
θ = 36n + (-1)ⁿ6
θ = 36×3 - 6
θ = 102°
When n=4
θ = 36n + (-1)ⁿ6
θ = 36×4 + 6
θ = 150
When n =5
θ = 36n + (-1)ⁿ6
θ = 36×5 - 6
θ = 174°
When n = 6
θ = 36n+ (-1)ⁿ6
θ = 36×6 + 6
θ = 222°
When n = 7
θ = 36n + (-1)ⁿ6
θ = 36×7 - 6
θ = 246°
When n =8
θ = 36n + (-1)ⁿ6
θ = 36×8 + 6
θ = 294°
When n =9
θ = 36n + (-1)ⁿ6
θ = 36×9 - 6
θ = 318°
When n =10
θ = 36n + (-1)ⁿ6
θ = 36×10 + 6
θ = 366°
When n = 10 is out of range of θ
Then, the solution is from n =0 to n=9
So the equation have 10 solutions in the range 0<θ<2π