Answer:
See attached image
Explanation:
An ionic bond is a type of chemical bond in which occurs an electrons transfer, where one of the atoms act as a donor and the other act as the acceptor. Compound with ionic bonds are very stables and strong because of the attraction of the opposite charges. These attractions help ions stay together forming solid nets.
A covalent bond is a type of chemical bond in which the electrons are shared. Unlike the ionic bond, the atoms act at the same time as donors and acceptors sharing their electrons. The covalent bond keeps the atoms together because an electrostatic force, thus this bond is weaker than the ionic bond.
A metallic bond is a force which keeps together metallic atoms. In this type of bond, there is no transfer or sharing of electrons. The atoms are kept together because of an electrostatic force. Since there is no electron exchange involved a metallic bond is weaker than the other two.
In diamond, every carbon atom shared four electrons with other carbon atoms between a covalent bond. These form a regular tetrahedron. On the other side, graphite has a layer structure, in which every layer hold carbon atoms wich shared electrons with other tree atoms. All the layers stay together because of the Van der Waals force. These difference in bonds cause to have different properties, diamond is one of the hardest materials and graphite it is not.
I prefer using the slope formula because it’s easy to pick two numbers on a graph and solve for the slope with a simple equation.
A tree getting struck by lightning, it is an example of a physical change.
It is so because when a tree getting struck by lightning, it encountered a strong force of power but no new substance is formed here. So it is a physical change, if it is a chemical change then a new substance must formed here. So when a tree getting struck by lightning, it is an example of a physical change.
<span>83.9%
First, determine the molar masses of Al(C6H5)3 and C6H6. Start by looking up the atomic weights of the involved elements.
Atomic weight aluminum = 26.981539
Atomic weight carbon = 12.0107
Atomic weight hydrogen = 1.00794
Molar mass Al(C6H5)3 = 26.981539 + 18 * 12.0107 + 15 * 1.00794 = 258.293239 g/mol
Molar mass C6H6 = 6 * 12.0107 + 6 * 1.00794 = 78.11184 g/mol
Now determine how many moles of C6H6 was produced
Moles C6H6 = 0.951 g / 78.11184 g/mol = 0.012174851 mol
Looking at the balanced equation, it indicates that 1 mole of Al(C6H5)3 is required for every 3 moles of C6H6 produced. So given the number of moles of C6H6 you have, determine the number of moles of Al(C6H5)3 that was required.
0.012174851 mol / 3 = 0.004058284 mol
Then multiply by the molar mass to get the number of grams that was originally present.
0.004058284 mol * 258.293239 g/mol = 1.048227218 g
Finally, the weight percent is simply the mass of the reactant divided by the total mass of the sample. So
1.048227218 g / 1.25 g = 0.838581775 = 83.8581775%
And of course, round to 3 significant digits, giving 83.9%</span>
Answer:
B: A big chunk of space rock
Explanation:
asteroids are basically known as minor planets.
whereas shooting star is some dust burning while entering earths atmosphere.
on the other hand comet is some icy material consisting of gases.
and meteor is a very very small rocky or metallic body.