Sine law to find angle R
![\displaystyle \frac{\sin R}{122}= \frac{\sin 64}{187.5} \\ \\ \sin R = \frac{122\sin 64}{187.5} \\ \\ R = \sin^{-1} \left[ \frac{122\sin 64}{187.5} \right] \\ \\ R \approx 35.7899447211](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B%5Csin%20R%7D%7B122%7D%3D%20%5Cfrac%7B%5Csin%2064%7D%7B187.5%7D%20%5C%5C%20%5C%5C%0A%5Csin%20R%20%3D%20%20%5Cfrac%7B122%5Csin%2064%7D%7B187.5%7D%20%5C%5C%20%5C%5C%0AR%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7B122%5Csin%2064%7D%7B187.5%7D%20%5Cright%5D%20%5C%5C%20%20%5C%5C%0AR%20%5Capprox%2035.7899447211)
All angles in triangle add to 180 so we can find angle P
P = 180 - R - Q
P = 180 - 35.7899447211 - 64
P = 80.2100552789
sine law with angle P to find length of RQ

or use cosine law

either way the answer is 205.57 feet
(36-4)=32
32\16=2
2-7^2=-47
20 minutes
80*8=640 words
640 words/32 words per minute=20 minutes
Answer:37
Step-by-step explanation:
6372=23323+473=37