The question mentions a change in temperature from 25 to 50 °C. With that, the aim of the question is to determine the change in volume based on that change in temperature. Therefore this question is based on Gay- Lussac's Gas Law which notes that an increase in temperature, causes an increase in pressure since the two are directly proportional (once volume remains constant). Thus Gay-Lussac's Equation can be used to solve for the answer.
Boyle's Equation:

=

Since the initial temperature (T₁) is 25 C, the final temperature is 50 C (T₂) and the initial pressure (P₁) is 103 kPa, then we can substitute these into the equation to find the final pressure (P₂).

=

∴ by substituting the known values, ⇒ (103 kPa) ÷ (25 °C) = (P₂) ÷ (50 °C)
⇒ P₂ = (4.12 kPa · °C) (50 °C)
=
206 kPa
Thus the pressure of the gas since the temperature was raised from 25 °C to 50 °C is
206 kPa
The mole ratio of acetic acid to water in 100 g of vinegar is 0.015 : 0.985.
<h3>What is the mole ratio of acetic acid to water in 100 g of vinegar?</h3>
The mole ratio of acetic acid to water in 100 g of vinegar is determined from their percentage composition.
The percentage composition of acetic acid and water in vinegar is 5% acetic acid and 95% water.
In 100 g of vinegar, there are 5 g of acetic acid and 5 g of water.
Moles = mass/molar mass
molar mass of acetic acid = 62 g/mol
molar mass of water = 18 g/mol
moles of vinegar = 5/62 = 0.08
moles of water = 95/18 = 5.28
total moles = 5.36
Mole ratio of vinegar to water = 0.08/5.36 : 5.28/5.36
Mole ratio of vinegar to water = 0.015 : 0.985
In conclusion, the mole ratio is determined from the percentage composition of acetic acid and water in vinegar.
Learn more about mole ratio at: brainly.com/question/19099163
#SPJ1
Answer:
please add more info into your response
Explanation:
Answer:
How stable is the matter that the energy is transferring to? How volatile is the thermal Resistance?