Answer:
rfgcc ft v crytrcvrcvhtfvyrfftv ffg
Step-by-step explanation:
tgfgghcg gn v v
Answer:
A sequence that has a contant addition/subtraction to get to the next term
for example:
-3, 0, 3, 6, ...
to get to the next term, we'll need to add 3 each time
Step-by-step explanation:
I don't know if we can find the foci of this ellipse, but we can find the centre and the vertices. First of all, let us state the standard equation of an ellipse.
(If there is a way to solve for the foci of this ellipse, please let me know! I am learning this stuff currently.)

Where

is the centre of the ellipse. Just by looking at your equation right away, we can tell that the centre of the ellipse is:

Now to find the vertices, we must first remember that the vertices of an ellipse are on the major axis.
The major axis in this case is that of the y-axis. In other words,
So we know that b=5 from your equation given. The vertices are 5 away from the centre, so we find that the vertices of your ellipse are:

&

I really hope this helped you! (Partially because I spent a lot of time on this lol)
Sincerely,
~Cam943, Junior Moderator
The tree and the shadow make a right triangle with the tree height opposite the 68 degree angle:


Choice C
Answer:
See Explanation
Step-by-step explanation:
If a Function is differentiable at a point c, it is also continuous at that point.
but be careful, to not assume that the inverse statement is true if a fuction is Continuous it doest not mean it is necessarily differentiable, it must satisfy the two conditions.
- the function must have one and only one tangent at x=c
- the fore mentioned tangent cannot be a vertical line.
And
If function is differentiable at a point x, then function must also be continuous at x. but The converse does not hold, a continuous function need not be differentiable.
- For example, a function with a bend, cusp, or vertical tangent may be continuous, but fails to be differentiable at the location of the anomaly.