Answer:
y = (1/3)x + 7
Step-by-step explanation:
The general structure form of a line in slope-intercept form is:
y = mx + b
In this form, "m" represents the slope and "b" represents the y-intercept.
The slope of a perpendicular line is the opposite-signed, reciprocal of the original line's slope. Therefore, if the slope of the original line is m = -3, the new slope is m = 1/3.
The y-intercept can be found by plugging the new slope and the values from the point (-3, 6) into the slope-intercept form equation.
m = 1/3
x = -3
y = 6
y = mx + b <----- Slope-intercept form
6 = (-3)(1/3) + b <----- Insert values
6 = -1 + b <----- Multiply -3 and 1/3
7 = b <----- Add 1 to both sides
Now, that you have the slope and y-intercept, you can construct the equation of the perpendicular line.
y = (1/3)x + 7
Answer:
y = 10
x = 17
Step-by-step explanation:
4y - 3 = 37
4y = 37 + 3
4y = 40
y = 40 / 4
y = 10
3x - 9 = 42
3x = 42 + 9
3x = 51
x = 51 / 3
x = 17
<em>Hope that helps!</em>
Answer:
n = x * 3
Step-by-step explanation:
n is your "number"
Answer:
A
Step-by-step explanation:
This is exponential decay; the height of the ball is decreasing exponentially with each successive drop. It's not going down at a steady rate. If it was, this would be linear. But gravity doesn't work on things that way. If the ball was thrown up into the air, it would be parabolic; if the ball is dropped, the bounces are exponentially dropping in height. The form of this equation is
, or in our case:
, where
a is the initial height of the ball and
b is the decimal amount the bounce decreases each time. For us:
a = 1.5 and
b = .74
Filling in,

If ww want the height of the 6th bounce, n = 6. Filling that into the equation we already wrote for our model:
which of course simplifies to
which simplifies to

So the height of the ball is that product.
A(6) = .33 cm
A is your answer