Answer:
Step-by-step explanation:
13) x⁴-12x² +36
(a-b)² = a²-2ab+b²
a = x² ; b = 6
(x²)² - 2 * x² * 6 + 6² = (x² - 6)²
14) w⁴- 14w² - 32 = w⁴+ 2w² - 16w² - 32 = w² (w² + 2) - 16 (w²+2)
= (w² + 2) (w² -16 )
15) k³ + 7k² - 44k = k ( k² + 7k -44) = k ( k+11 ) ( k-4 )
16) 2a³ +28a²+96a =2a(a²+14a+48) = 2a(a+6)(a+8)
17) -x³ +4x² +21x = (-x) ( x² - 4x - 21) = (-x)(x-7)(x+3)
18) m⁶ - 7m⁴ -18m² = m² ( m⁴-7m²-18) = m² (m²-9)(m²+9)
= m² (m+1) (m-1)(m²+9)
19) 9y⁶ +6y⁴ + y²= y² ( 9y⁴+6y²+1) = y² (3y²+1)²
20) 8c⁴+10c² -3 = (4c +1)(2c-3)
Hi there!

To find the indefinite integral, we must integrate by parts.
Let "u" be the expression most easily differentiated, and "dv" the remaining expression. Take the derivative of "u" and the integral of "dv":
u = 4x
du = 4
dv = cos(2 - 3x)
v = 1/3sin(2 - 3x)
Write into the format:
∫udv = uv - ∫vdu
Thus, utilize the solved for expressions above:
4x · (-1/3sin(2 - 3x)) -∫ 4(1/3sin(2 - 3x))dx
Simplify:
-4x/3 sin(2 - 3x) - ∫ 4/3sin(2 - 3x)dx
Integrate the integral:
∫4/3(sin(2 - 3x)dx
u = 2 - 3x
du = -3dx ⇒ -1/3du = dx
-1/3∫ 4/3(sin(2 - 3x)dx ⇒ -4/9cos(2 - 3x) + C
Combine:

I think it is 715 mph but I may have done my math wrong....
Answer:
The number in standard form is 233.64