The given reaction is:
3Fe + 4H2O → Fe3O4 + 4H2
Given:
Mass of Fe = 354 g
Mass of H2O = 839 g
Calculation:
Step 1 : Find the limiting reagent
Molar mass of Fe = 56 g/mol
Molar mass of H2O = 18 g/mol
# moles of Fe = mass of Fe/molar mass Fe = 354/56 = 6.321 moles
# moles of H2O = mass of h2O/molar mass of H2O = 839/18 = 46.611 moles
Since moles of Fe is less than H2O; Fe is the limiting reagent.
Step 2: Calculate moles of Fe3O4 formed
As per reaction stoichiometry:
3 moles of Fe form 1 mole of Fe3O4
Therefore, 6.321 moles of Fe = 6.321 * 1/ 3 = 2.107 moles of Fe3O4
Step 4: calculate the mass of Fe3O4 formed
Molar mass of Fe3O4 = 232 g/mol
# moles = 2.107 moles
Mass of Fe3O4 = moles * molar mass
= 2.107 moles * 232 g/mol = 488.8 g (489 g approx)
Answer:
true
Explanation:
if u mix it can explode which is a chemical reaction
Answer:17.955atm
Explanation:Pv=nrt
P= nrt/v
P= 7.25*0.08205*360/11.90
P= 214.1505/11.90
P=17.995atm
Answer:
Choice A: approximately
.
Explanation:
Note that the unit of concentration,
, typically refers to moles per liter (that is:
.)
On the other hand, the volume of the two solutions in this question are apparently given in
, which is the same as
(that is:
.) Convert the unit of volume to liters:
.
.
Calculate the number of moles of
formula units in that
of the
solution:
.
Note that
(sulfuric acid) is a diprotic acid. When one mole of
completely dissolves in water, two moles of
ions will be released.
On the other hand,
(sodium hydroxide) is a monoprotic base. When one mole of
formula units completely dissolve in water, only one mole of
ions will be released.
ions and
ions neutralize each other at a one-to-one ratio. Therefore, when one mole of the diprotic acid
dissolves in water completely, it will take two moles of
to neutralize that two moles of
produced. On the other hand, two moles formula units of the monoprotic base
will be required to produce that two moles of
. Therefore,
and
formula units would neutralize each other at a two-to-one ratio.
.
.
Previous calculations show that
of
was produced. Calculate the number of moles of
formula units required to neutralize that
.
Calculate the concentration of a
solution that contains exactly
of
formula units:
.