9 inches * 1 foot / 12 inches
= 3/4 feet deep
Area of the sidewalk:
= the sides of the pool * the width of the sidewalk + the corners of the sidewalk (width * width)
= 2 sides * 6 (feet / side) * 2 feet + 2 sides * 14 (feet / side) * 2 feet + 4 corners * (2 feet * 2 feet / corner)
= 12 feet * 2 feet + 28 feet * 2 feet + 4 * 2 feet * 2 feet
= 24 feet^2 + 56 feet^2 + 16 feet^2
= 96 feet^2
Volume:
= 96 feet^2 * 3/4 feet
= (96 * 3 / 4) feet^3
= (19 * 3) feet^3
= 57 feet^3
You HAVE to use Pemdas.
2[3(4^2+1)]-2^3
2(3(16+1))-2^3
2(3(17))-2^3
2*51-2^3
102-8
94.
Explanation: you use Pemdas P-parenthesis
E-exponents
M-multiplication
D-division
A-addition
S-subtraction
2 tens, and 8 ones. I say this because 20 = 10 + 10 so, two tens. 8= 1+1+1+1+1+1+1+1 so, eight ones.
Answer:
$1,050*125x=P(x). I just need more characters.
Answer:
½ ln 3
Step-by-step explanation:
∫ sec²x / tan x dx
If u = tan x, then du = sec²x dx.
∫ du / u
ln|u| + C
ln|tan x| + C
Evaluate between π/4 and π/3.
ln|tan(π/3)| + C − (ln|tan(π/4)| + C)
ln|√3| + C − ln|1| − C
ln(√3)
½ ln 3