Answer:
The height of the building is 
Step-by-step explanation:
see the attached figure to better understand the problem
we know that
In the right triangle ABC

we have

substitute and solve for BC


Find the height of the building
The height of the building (h) is equal to

Answer:
6y
Step-by-step explanation:
The two figure are squares with the same area
side = √area = √y^2 = y (with y>0 because a length can‘t be negative)
perimeter = side * 6 = y * 6 = 6y
Answer:
x = 9
Step-by-step explanation:
5x -11 (+11) = 34 (+11)
5x = 45
5x ÷ 5 = 45 ÷ 5
x = 9
To determine the value of X in the given equation substitute the value of y into the equation and solve for x.
1/5x - 2/3y = 30
1/5x - 2/3(15) = 30
1/5x -10 = 30
1/5x - 10 + 10 = 30 + 10
1/5x = 40
1 = 5x • 40
1 = 200x
X = 1/200.

<h3><u>Answer </u><u>1</u><u> </u><u>:</u><u>-</u></h3>
If I were one of the students in Barangay then I shall prepare the design of kite by using the known properties of kites in mathematics.
For example, Symmetrical about its main diagonals, Adjacent side equals, Having two pairs of congruent triangle etc.
<h3><u>Answer </u><u>2</u><u> </u><u>:</u><u>-</u><u> </u></h3>
Design of kite assign to me
<u>Step </u><u>1</u><u> </u><u>:</u><u>-</u>
- I shall take one paper and cut it like that the adjacent sides of paper are equal
<u>Reason </u><u>:</u><u>-</u>
- <u>Adjacent </u><u>sides </u><u>of </u><u>kite </u><u>are </u><u>equal </u>
<u>Step </u><u>2</u><u> </u><u>:</u><u>-</u>
- I shall take two thin sticks and paste it on the paper but sticks should intersect each other at 90°
<u>Reason</u><u> </u><u>:</u><u>-</u>
- <u>Kite</u><u> </u><u>has </u><u>2</u><u> </u><u>diagonals </u><u>which </u><u>intersect </u><u>each </u><u>other </u><u>at </u><u>9</u><u>0</u><u>°</u><u> </u><u>.</u>
<u>Step </u><u>3</u><u> </u><u>:</u><u>-</u>
- <u>Make </u><u>a </u><u>hole </u><u>in </u><u>the </u><u>one </u><u>of </u><u>the </u><u>end </u><u>point </u><u>of </u><u>a </u><u>longest </u><u>sides</u><u>. </u>
<u>Observation </u><u>:</u><u>-</u>
- <u>The </u><u>kite </u><u>should </u><u>be </u><u>looked </u><u>like </u><u>that </u><u>it </u><u>having </u><u>two </u><u>pairs </u><u>of </u><u>congruent </u><u>triangle</u><u> </u><u>with </u><u>common </u><u>base. </u>
<h3><u>Answer </u><u>3</u><u> </u><u>:</u><u>-</u></h3>
- The adjacent sides of the kites are equal that is 4cm and 6cm
- The diagonals of the kite bisect each other at 90°
- As kite is symmetrical from main diagonals , so it has two opposite and equal Angles that is 127°
- The opposite angles at the end points of kite are congruent that is Angle D and Angle C
- AC is the bisector of AB and AB is the bisector of AC .
[ Note :- Kindly refer the above attachment ]
<h3><u>Answer </u><u>4</u><u> </u><u>:</u><u>-</u></h3>
All mathematical concepts used in making kite are as follows :-
- <u>Adjacent </u><u>sides </u><u>are </u><u>equal </u>
- <u>Diagonal </u><u>intersect </u><u>each </u><u>other </u><u>at </u><u>9</u><u>0</u><u>°</u>
- <u>Having </u><u>two </u><u>pairs </u><u>of </u><u>congruent </u><u>triangle </u><u>with </u><u>common </u><u>base </u>
- <u>Symmetrical </u><u>about</u><u> </u><u>its </u><u>main </u><u>diagonal</u>
- <u>Opposite </u><u>angles </u><u>at </u><u>the </u><u>end </u><u>points </u><u>are </u><u>equal</u>