The correct answer is B, 8(9 + 3/4). The question asked for an expression that represents 8 times the sum of 9 and 3/4. The sum of 9 and 3/4 can be written as 9 + 3/4, and to multiply it by 8, we have to put it in parentheses. In PEMDAS (parentheses, exponents, multiplication and division, addition and subtraction) multiplication comes first, so if we left out the parentheses, we would be adding 72 to 3/4, since we multiply 8 and 9 first.
Hope this helps!
General Idea:
Domain of a function means the values of x which will give a DEFINED output for the function.
Applying the concept:
Given that the x represent the time in seconds, f(x) represent the height of food packet.
Time cannot be a negative value, so

The height of the food packet cannot be a negative value, so

We need to replace
for f(x) in the above inequality to find the domain.
![-15x^2+6000\geq 0 \; \; [Divide \; by\; -15\; on\; both\; sides]\\ \\ \frac{-15x^2}{-15} +\frac{6000}{-15} \leq \frac{0}{-15} \\ \\ x^2-400\leq 0\;[Factoring\;on\;left\;side]\\ \\ (x+200)(x-200)\leq 0](https://tex.z-dn.net/?f=%20-15x%5E2%2B6000%5Cgeq%200%20%5C%3B%20%5C%3B%20%20%5BDivide%20%5C%3B%20by%5C%3B%20-15%5C%3B%20on%5C%3B%20both%5C%3B%20sides%5D%5C%5C%20%5C%5C%20%5Cfrac%7B-15x%5E2%7D%7B-15%7D%20%2B%5Cfrac%7B6000%7D%7B-15%7D%20%5Cleq%20%5Cfrac%7B0%7D%7B-15%7D%20%5C%5C%20%5C%5C%20x%5E2-400%5Cleq%200%5C%3B%5BFactoring%5C%3Bon%5C%3Bleft%5C%3Bside%5D%5C%5C%20%5C%5C%20%28x%2B200%29%28x-200%29%5Cleq%200%20)
The possible solutions of the above inequality are given by the intervals
. We need to pick test point from each possible solution interval and check whether that test point make the inequality
true. Only the test point from the solution interval [-200, 200] make the inequality true.
The values of x which will make the above inequality TRUE is 
But we already know x should be positive, because time cannot be negative.
Conclusion:
Domain of the given function is 
Im pretty sure i can help you out on this one
the correct one is monomial