Answer:
Step-by-step explanation:
yes.
x/y is a rational number
because xxby y is irrational that why x/y is rational number
C. g=-5 is the correct answer
Answer:
The cost of posting one letter = £1.68
Step-by-step explanation:
Total amount Amina has = £20
Amina's change = £14.96
Total cost spent on posting the letters = £20 - £14.96 = £5.04
And we're told that she posts 3 letters in total, with the cost of posting each letter the same.
Cost of posting 3 letters = £5.04
Cost of posting only 1 letter = (£5.04/3) = £1.68
Hence, the cost of posting a letter = £1.68
Hope this Helps!!!
Answer:
The answer is 
Step-by-step explanation:
To calculate the volumen of the solid we solve the next double integral:

Solving:

![[6x^{2} ]{{1} \atop {0}} \right. * [\frac{y^{3}}{3}]{{1} \atop {0}} \right.](https://tex.z-dn.net/?f=%5B6x%5E%7B2%7D%20%5D%7B%7B1%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%2A%20%5B%5Cfrac%7By%5E%7B3%7D%7D%7B3%7D%5D%7B%7B1%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Replacing the limits:

The plane y=mx divides this volume in two equal parts. So volume of one part is 1.
Since m > 1, hence mx ≤ y ≤ 1, 0 ≤ x ≤ 
Solving the double integral with these new limits we have:

This part is a little bit tricky so let's solve the integral first for dy:
![\int\limits^\frac{1}{m}_0 [{12x \frac{y^{3}}{3}}]{{1} \atop {mx}} \right.\, dx =\int\limits^\frac{1}{m}_0 [{4x y^{3 }]{{1} \atop {mx}} \right.\, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%5Cfrac%7B1%7D%7Bm%7D_0%20%5B%7B12x%20%5Cfrac%7By%5E%7B3%7D%7D%7B3%7D%7D%5D%7B%7B1%7D%20%5Catop%20%7Bmx%7D%7D%20%5Cright.%5C%2C%20dx%20%3D%5Cint%5Climits%5E%5Cfrac%7B1%7D%7Bm%7D_0%20%5B%7B4x%20y%5E%7B3%20%7D%5D%7B%7B1%7D%20%5Catop%20%7Bmx%7D%7D%20%5Cright.%5C%2C%20dx)
Replacing the limits:

Solving now for dx:
![[{\frac{4x^{2}}{2} -\frac{4m^{3} x^{5}}{5} ]{{\frac{1}{m} } \atop {0}} \right. = [{2x^{2} -\frac{4m^{3} x^{5}}{5} ]{{\frac{1}{m} } \atop {0}} \right.](https://tex.z-dn.net/?f=%5B%7B%5Cfrac%7B4x%5E%7B2%7D%7D%7B2%7D%20-%5Cfrac%7B4m%5E%7B3%7D%20x%5E%7B5%7D%7D%7B5%7D%20%5D%7B%7B%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%3D%20%5B%7B2x%5E%7B2%7D%20-%5Cfrac%7B4m%5E%7B3%7D%20x%5E%7B5%7D%7D%7B5%7D%20%5D%7B%7B%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Replacing the limits:

As I mentioned before, this volume is equal to 1, hence:
