<h3><u>Given</u><u>:</u><u>-</u></h3>
- Perimeter of parallelogram = 66 ft
<h3><u>To</u><u> </u><u>find</u><u> </u><u>out</u><u>:</u><u>-</u></h3>
Find the longest side of a parallelogram.
<h3><u>Formula</u><u> </u><u>used</u><u>:</u><u>-</u></h3>
Perimeter of parallelogram = 2 ( a + b )
<h3>
<u>Solution:-</u><u> </u></h3>
We know that,
Perimeter of parallelogram = 2 ( a + b )
★ Substituting the values in the above formula,we get:
⇒ 66 = 2 ( 3x + 1 + 2x - 3 )
⇒ 66 = 2 ( 5x - 2 )
⇒ 66/2 = 5x - 2
⇒ 33 = 5x - 2
⇒ 5x - 2 = 33
⇒ 5x = 33 + 2
⇒ 5x = 35
⇒ x = 35/5
⇒ x = 7 ft
Now,
One side,a = 3x + 1
★ Putting the value of x
⇒ 3 × 7 + 1
⇒ 21 + 1
⇒ 22 ft
Other side,b = 2x - 3
★ Putting the value of x
⇒ 2 × 7 - 3
⇒ 14 - 3
⇒ 11 ft
Hence,the longest Side of given parallelogram is 22 ft ( 3x + 1 ) .
I think it would be 10x12. Because ur basically adding 2 inches to the width. And two inches to the length cuz of the 4 sides of the frame. So in the end the area would be 120 inches squared
Answer:
ok I got you
Step-by-step explanation:
2+2=3x
or, 4=3x
or, 4/3x
ans:. x=4/3
With 5 elements in A={20,1,6,10,11}, there are 2^5=32 possible subsets, including
the null set, and A itself.
Any subset that is identical to A is NOT a proper subset.
Therefore there are 31 proper subsets, plus the subset {20,1,6,10,11}.
The subsets are:
null set {} (has no elements) ........total 1
{20},{1},{6},{10},{11}.......................total 5
{20,1},{20,6}...{10,11}.....................total 10
{20,1,6},{20,1,10},...{6,10,11}.........total 10
{20,1,6,10}...{1,6,10,11}.................total 5
{20,1,6,10,11}.................................total 1
Altogether 32 subsets.
Answer:
y - x= - 13 -------(1)
- 4x + 3y = -51 -------(2)
(1) => y = - 13 + x
Substitute y in (2)
- 4x + 3( - 13 + x) = -51
- 4x - 39 + 3x = -51
- x = -51 + 39
- x = -12
x = 12
Substitute x in (1)
y = - 13 + x = -13 + 12 = - 1
x = 12, y = -1