Answer:
the hypotenuse of the given triangle is 48.5 ft
Step-by-step explanation:
the ways to detect the hypotenuse of a triangle are :
- longest side of a right angled triangle is the hypotenuse of the triangle .
- side opposite to the right angle ( 90° ) is the hypotenuse of the right angled triangle .
<em> </em><em>in</em><em> </em><em>the</em><em> </em><em>given</em><em> </em><em>figure</em><em> </em><em>the</em><em> </em><em>longest</em><em> </em><em>side</em><em> </em><em>is</em><em> </em><em>48</em><em>.</em><em>5</em><em>,</em><em> </em><em>hence</em><em> </em><em>it's</em><em> </em><em>the</em><em> </em><em>hypotenuse</em><em>.</em><em>.</em><em>.</em><em>.</em>
Your answer is zero because you do 4*4=16*3=48*0=zero your answer
hope this helps you
Answer:
The answer is c
Step-by-step explanation:
Answer is c sorry not explanation
Answer:
5 3/10
Step-by-step explanation:
9 7/10 = 97/10
4 2/5 = 4 4/10 = 44/10
97/10 - 44/10 = 53/10
53/10 = 5 3/10
The vector i=<1,0> and j=<0,1> so the i+j=<1+0,0+1>=<1,1>. The length of this vector is easy: |i+j|=<span>2–√</span>
to make the vector i+j=<1,1> a unit vector we rescale it by it's
length (i.e. divide i+j by its length) , v=(i+j)/(|i+j|)
thus we have v=<span>1/<span>2–√</span><1,1></span> or <span><1/<span>2–√</span>,1/<span>2–√</span>></span>
If you check the length of this vector v, you see it indeed does have
length =1. It is parallel to the vector i+j because it's components are
proportional to the components of i+j=<1,1>.