Answer:
isosceles right
Step-by-step explanation:
two same side and right angle
Given:
.. apex angle is divided into 2 equal parts
.. base angles are equal
.. side lengths are equal
1. The triangles are congruent by ASA
2. The angles where the bisector meets the base add to 180°. (They are linear angles formed by the bisector and the base.)
3. The angles where the bisector meets the base are congruent. (The are corresponding angles of congruent triangles.
4. The angles where the bisector meets the base are 90°. (Congruent angles that add to 180° must be 90°.)
5. The bisector is a line from the apex meets the base at a right angle, so is an altitude. (Definition of altitude.)
Answer:
1031.25 =x
Step-by-step explanation:
50/24 = x /495
We can use cross products to solve
50 *495 = 24*x
24750 = 24x
Divide each side by 24
24750/24 =24x/24
1031.25 =x
Answer:
D) no solution.
Step-by-step explanation:
4(x + 1) ≤ 4x + 3
First, distribute 4 to all terms within the parenthesis:
4(x + 1) = 4(x) + 4(1) = 4x + 4
4x + 4 ≤ 4x + 3
Isolate the variable, x. Treat the "≤" as an equal sign, what you do to one side, you do to the other. Subtract 4x and 4 from both sides:
4x (-4x) + 4 (-4) ≤ 4x (-4x) + 3 (-4)
4x - 4x ≤ 3 - 4
0 ≤ -1
Since x was eliminated from the inequality, and you need the x for the inequality, your answer is D) no solution.
~
Answer
x = 1
Explanation:
Given the following equation
![\begin{gathered} (2x+2)^{\frac{1}{2}}=\text{ -2} \\ \text{According to the law of indicies} \\ x^{\frac{1}{2}}\text{ = }\sqrt[]{x} \\ (2x+2)^{\frac{1}{2}}\text{ = }\sqrt[]{(2x\text{ + 2)}} \\ \text{Step 1: Take the square of both sides} \\ \sqrt[]{(2x\text{ + 2) }}\text{ = -2} \\ \sqrt[]{(2x+2)^2}=-2^2 \\ 2x\text{ + 2 = 4} \\ \text{Collect the like terms} \\ 2x\text{ = 4 - 2} \\ 2x\text{ = 2} \\ \text{Divide both sides by 2} \\ \frac{2x}{2}\text{ = }\frac{2}{2} \\ x\text{ = 1} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%282x%2B2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%3D%5Ctext%7B%20-2%7D%20%5C%5C%20%5Ctext%7BAccording%20to%20the%20law%20of%20indicies%7D%20%5C%5C%20x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7Bx%7D%20%5C%5C%20%282x%2B2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B%282x%5Ctext%7B%20%2B%202%29%7D%7D%20%5C%5C%20%5Ctext%7BStep%201%3A%20Take%20the%20square%20of%20both%20sides%7D%20%5C%5C%20%5Csqrt%5B%5D%7B%282x%5Ctext%7B%20%2B%202%29%20%7D%7D%5Ctext%7B%20%3D%20-2%7D%20%5C%5C%20%5Csqrt%5B%5D%7B%282x%2B2%29%5E2%7D%3D-2%5E2%20%5C%5C%202x%5Ctext%7B%20%2B%202%20%3D%204%7D%20%5C%5C%20%5Ctext%7BCollect%20the%20like%20terms%7D%20%5C%5C%202x%5Ctext%7B%20%3D%204%20-%202%7D%20%5C%5C%202x%5Ctext%7B%20%3D%202%7D%20%5C%5C%20%5Ctext%7BDivide%20both%20sides%20by%202%7D%20%5C%5C%20%5Cfrac%7B2x%7D%7B2%7D%5Ctext%7B%20%3D%20%7D%5Cfrac%7B2%7D%7B2%7D%20%5C%5C%20x%5Ctext%7B%20%3D%201%7D%20%5Cend%7Bgathered%7D)
Therefore, x = 1