Answer:
Measure of angle 2 and angle 4 is 42°.
Step-by-step explanation:
From the figure attached,
m∠ABC = 42°
m(∠ABD) = 90°
m(∠ABD) = m(∠ABC) + m(∠DBC)
90° = 43° + m(∠DBC)
m(∠DBC) = 90 - 43 = 47°
Since ∠ABC ≅ ∠4 [Vertical angles]
m∠ABC = m∠4 = 42°
Since, m∠3 + m∠4 = 90° [Complimentary angles]
m∠3 + 42° = 90°
m∠3 = 90° - 42°
= 48°
Since, ∠5 ≅ ∠3 [Vertical angles]
m∠5 = m∠3 = 48°
m∠3 + m∠2 = 90° [given that m∠2 + m∠3 = 90°]
m∠2 + 48° = 90°
m∠2 = 90 - 48 = 42°
m∠3+ m∠4 = 90° [Since, ∠3 and ∠4 are the complimentary angles]
48° + m∠4 = 90°
m∠4 = 90 - 48 = 42°
Therefore, ∠2 and ∠4 measure 42°.
There's many properties you can use to find an unknown angle.
There are too many to lists but one core example would be an isosceles triangle that has two adjacent sides and angles.
Let's say that the sides of an isosceles triangle are any number "x"
now since two sides of the triangle are the same we can add these two x's together.
x+x = 2x
now the other side of the triangle can be anything you like. We can call it 4x for this example.
now if we add them all together we'll get 4x+2x=6x
Now since the angles of a triangle add up to 180 degrees
we can equate 6x=180 leaving x to be 30.
Now since x belongs to both sides of the triangle we can say that both angles are congruent as well because the two sides of the triangle are congruent. This is a known triangle law.
Since both angles are now 30 degrees this will leave us with 2(30) = 60
now if we subtract 180 - 60 we'll get 120 which is the remainder of the 3rd angle of the side that corresponds with 4x.
<span />
A short way of writing really large numbers or really small numbers
Ex:
360,000,000 is written in scientific nation as.. 3.6 x 10^8
Hahah hdhe jw iDisk idjwj