Answer:
Step-by-step explanation:
Let the rate at which the bacteria grow be represented by the exponential equation
P(t) = P0e^kt
P(t) is the population of the bacteria after time t
P0 is the initial population
k is the constant of variation
t is the time
If the initial Population is 160 bacteria's, them the equation becomes;
P(t) = 160e^kt
b) if After 5 hours there will be 800 bacteria, this means
at t = 5 p(t) = 800
Substitute and get k
800 = 160e^5k
800/160 = e^5k
5 = e^5k
Apply ln to both sides
Ln5 = lne^5k
ln5 = 5k
k = ln5/5
k = 0.3219
Next is to calculate the population after 7hrs i.e at t = 7
P(7) = 160e^0.3219(7)
P(7) = 160e^2.2532
P(7) = 160(9.5181)
P(7) = 1522.9
Hence the population after 7houra will be approximately 1523populations
c) To calculate the time it will take the population to reach 2790
When p(t) = 2790, t = ?
2790 = 160e^0.3219t
2790/160 = e^0.3219t
17.4375 = e^0.3219t
ln17.4375 = lne^0.3219t
2.8587 = 0.3219t
t = 2.8587/0.3219
t = 8.88 hrs
Hence it will take approximately 9hrs for the population to reach 2790
Subtract the sum of the two angles from 180 degrees. The sum of all the angles of a triangle always equals 180 degrees. Write down the difference you found when subtracting the sum of the two angles from 180 degrees. This is the value of X.
Answer:
19 units
Step-by-step explanation:
Plot points A(5,2), B(-1,4), C(-2,1) and D(4,-1) on the coordinate plane. Find lengths of all sides as distances between two points:

The perimeter of the rectangle ABCD is

Answer:
<h2>
The mean decreases, and the median remains the same.</h2>
Step-by-step explanation:
Remember that a box plot is made by the quartiles of the distribution, the maximum value and the minimum value. So, from a box plot we can deduct the range, the median and the interquartile range.
In this case, the median remains the same at $9.5 per hour. The median is indicated by the middle line of the box, and you can observe that it doesn't change.
Now, the range of the data set decreases from 7 to 3.
On the other hand, the mean must decrease, because data greater than $11 doesn't exist in the box plot number 2, and the mean is a central measure sensible to those changes.
Therefore, the right answer is <em>The mean decreases, and the median remains the same.</em>
Answer:
What?
Step-by-step explanation: