Step-by-step explanation:

Answer:
a) Objective function (minimize cost):

Restrictions
Proteins per pound: 
Vitamins per pound: 
Non-negative values: 
b) Attached
c) The optimum solution (minimum cost) is 0 pounds of ingredient A and 0.75 pounds of ingredient B. The cost is $0.15 per ration.
d) The optimum solution changes. The cost is now 0 pounds of ingredient A and 0.625 pounds of ingredient B. The cost is $0.125 per ration.
Step-by-step explanation:
a) The LP formulation for this problem is:
Objective function (minimize cost):

Restrictions
Proteins per pound: 
Vitamins per pound: 
Non-negative values: 
b) The feasible region is attached.
c) We have 3 corner points. In one of them lies the optimal solution.
Corner A=0 B=0.75

Corner A=0.5 B=0.5

Corner A=0.75 B=0

The optimum solution (minimum cost) is 0 pounds of ingredient A and 0.75 pounds of ingredient B. The cost is $0.15 per ration.
d) If the company requires only 5 units of vitamins per pound rather than 6, one of the restrictions change.
The feasible region changes two of its three corners:
Corner A=0 B=0.625

Corner A=0.583 B=0.333

Corner A=0.75 B=0

The optimum solution changes. The cost is now 0 pounds of ingredient A and 0.625 pounds of ingredient B. The cost is $0.125 per ration.
Answer:
The value of x must be greater than 100.
Step-by-step explanation:
We need to find the value x for which the value of log(x) is greater than than 2.

According to the property of logarithm, if a is a real number.

Using the above property of logarithm, the given inequality can be rewritten as


We conclude that the value of log(x) is greater than 2 for real values of x which are greater than 100.
Therefore, the value of x must be greater than 100.