Answer: 4
Step-by-step explanation:
The answer is g(x) = x².
Solution:
The graph of h(x) = x²+9 translated vertically downward by 9 units means that each point (x, h(x)) is shifted onto the point (x, h(x) - 9), that is,
(x, h(x)) → (x, h(x) - 9)
The translated graph that represents the function is defined by the expression for g(x):
g(x) = h(x) - 9 = x² + 9 - 9 = x²
h(x) = x²+9 → g(x) = x² shows that the graph of the equation g(x) = x² moves the graph of h(x) = x²+9 down nine units.
Answer:
The relation is <u>not</u> a function.
Step-by-step explanation:
A function is a relation in which no two ordered pairs have the same input and different outputs. Whenever you're trying to determine whether a given relation is a function, observe whether each input corresponds with <u><em>exactly</em></u> one output.
In this case, the answer is no. The input value of 10 corresponds with two output values, 4 and 20. It only takes one input value to associate with more than one output value to be <u>invalid</u> as a function.
Therefore, the given relation is <em><u>not</u></em> a function.
Answer:
Answer:
The width is 4 units, and the length is 10 units.
Step-by-step.
Step-by-step explanation:
area of rectangle = length * width
Let L = length; let W = width.
"The length is 6 units greater than the width.": L = W + 6
area = LW = 40
Since L = W + 6, we substitute L with W + 6.
(W + 6)W = 40
W^2 + 6W = 40
W^2 + 6W - 40 = 0
(W - 4)(W + 10) = 0
W - 4 = 0 or W + 10 = 0
W = 4 or W = -10
A width cannot be a negative number, so we discard the solution W = -10.
W = 4
L = W + 6 = 4 + 6 = 10
The width is 4 units, and the length is 10 units.