Dy/dx = y/(x^2)
dy/y = dx/(x^2)
int[dy/y] = int[dx/(x^2)] ... apply integral to both sides
ln(|y|) = (-1/x) + C
|y| = e^{(-1/x) + C}
|y| = e^C*e^(-1/x)
|y| = C*e^(-1/x)
y = C*e^(-1/x)
So you have the correct answer. Nice job.
------------------------------------------------
Check:
y = C*e^(-1/x)
dy/dx = d/dx[C*e^(-1/x)]
dy/dx = d/dx[-1/x]*C*e^(-1/x)
dy/dx = (1/(x^2))*C*e^(-1/x)
is the expression for the left hand side (LHS)
y/(x^2) = [C*e^(-1/x)]/(x^2)
y/(x^2) = (1/(x^2))*C*e^(-1/x)
is the expression for the right hand side (RHS)
Since LHS = RHS, this confirms the solution for dy/dx = y/(x^2)
Answer:
-3a+3
Step-by-step explanation:
Your answer should be -3a+3
The answer is A. bc of the point
Answer:
Do you mean miles or meters but, ill give you the answer for both.
A. If you are finding whether 600 kilometers are more or less than 5 meters, 600 kilometers are more than 5 meters.
B. If you are finding whether 600 kilometers are bigger or smaller than 5 miles, 600 kilometers are bigger than 5 miles.
Answer: I will do this from top to bottom.
Step-by-step explanation:
1. -36.8+9.2x
2. The equation is incorrect so tell me the right equation.
3. -18.4