Which ordered pairs is a solution to −5x + 3y > 12?
2 answers:
Given the inequality statement, -5x + 3y > 12
We’ll substitute the given points to determine which is a solution that satisfies the inequality:
(3, 9):
-5(3) + 3(9) > 12
-15 + 27 > 12
12 > 12 (False statement, as 12 ≯ 12)
(-5, 5):
-5x + 3y > 12
-5(-5) + 3(5) > 12
25 + 15 > 12
40 > 12 (True statement). Thus, it is a solution.
(3, -6)
-5(3) + 3(-6) > 12
-15 - 18 > 12
-33 > 12 (False statement. -33 ≯ 12).
(-2, -5)
-5(-2) + 3(-5) > 12
10 - 15 > 12
-5 > 12 (False statement. -5 ≯ 12).
Therefore, the only solution is (-5, 5).
Please mark my answer as the Brainliest, if you find my explanations/solution helpful :)
<u>Answer </u><u>:</u><u>-</u>
Given inequality ,
- -5x +3y > 12
- 3y > 5x + 12
- y > 5/3x + 12/3
- y > 5/3x + 4
From the options ,
<u>When </u><u>x </u><u>is </u><u>3</u><u> </u><u>and </u><u>y </u><u>=</u><u> </u><u>9</u>
- y >1* 5 + 4
- y > 5 +4
- 9> 9 ( Not possible )
<u>When</u><u> </u><u>x </u><u>is </u><u>-</u><u>5</u><u> </u><u>y</u><u> </u><u>is </u><u>5</u><u> </u>
- y > 5/3*-5 + 4
- y > -8.3 + 4
- 5 > -3.7 ( Possible )
<u>When </u><u>x </u><u>is </u><u>3</u><u> </u><u>y </u><u>is </u><u>-</u><u>6</u><u> </u>
- y > 5 + 4
- -6 > 9 ( Not possible )
<u>When </u><u>x </u><u>is </u><u>-</u><u>2</u><u> </u><u>y </u><u>is </u><u>-</u><u>5</u><u> </u>
- y > -3.33 + 4
- -5 > -0.67 ( Possible )
<u>When </u><u>x </u><u>is </u><u>2</u><u> </u><u>y </u><u>is </u><u>8</u><u> </u>
- y > 3.33 + 4
- 8 > 7.77 ( possible )
<u>When</u><u> </u><u>x </u><u>is </u><u>-</u><u>6</u><u> </u><u>y </u><u>is </u><u>0</u><u> </u>
- y > -10 +4
- 0 > -6 ( possible )
You might be interested in
Answer:
x=ln(61)/ln(4)
Step-by-step explanation:
4^x+3=64
4^x=64-3
4^x=61
x=ln(61)/ln(4)
2(x+11) is equivalent to 3x+10x+12
Answer:
A. Stone bridges to steel bridges=
12 : 20
6 : 10
3 : 5
answer = 3 : 5
B. Steel bridges to Stone bridges
20 : 12
10 : 6
5 : 3
answer = 5 : 3
Total bridges = 20+12=32
C. Total bridges to steel bridges
32 : 20
16 : 10
8 : 5
answer = 8 : 5
Answer:
4/4 quarters
Step-by-step explanation:
hope this will help you