Answer:
Step-by-step explanation:
The scenario is represented in the attached photo. Triangle ABC is formed. AB represents her distance from her base camp. We would determine BC by applying the law of Cosines which is expressed as
a² = b² + c² - 2abCosA
Where a,b and c are the length of each side of the triangle and B is the angle corresponding to b. It becomes
AB² = AC² + BC² - 2(AC × BC)CosC
AB² = 42² + 28² - 2(42 × 28)Cos58
AB² = 1764 + 784 - 2(1176Cos58)
AB² = 2548 - 1246.37 = 1301.63
AB = √1301.63
AB = 36.08 km
To find the bearing, we would determine angle B by applying sine rule
AB/SinC = AC/SinB
36.08/Sin58 = 42/SinB
Cross multiplying, it becomes
36.08SinB = 42Sin58
SinB = 42Sin58/36.08 = 0.987
B = Sin^-1(0.987)
B = 81°
Therefore, her bearing from the base camp is
360 - 81 = 279°
Answer:
99miles is more likely correct
or 114miles as knots is usually higher mileage
Step-by-step explanation:
70^2 + 70^2 = c^2
sqrt 4900 + sqrt 4900 = c^2
sq rt 9800 = c^2 = 98.9949494
99 x 1.1507794480225 = 113.927165 = 114miles if converted to 80.6m/ph
70 Knots is equivalent to 80.554561361578 Miles/Hour. How to convert from Knots to Miles/Hour The conversion factor from Knots to Miles/Hour is 1.1507794480225. To find out how many Knots in Miles/Hour, multiply by the conversion factor or use the Velocity converter.
I believe the answer to your question is
Yes, you would get two triangles that have the same shape and size
Answer:
2 m
Step-by-step explanation:
Here the area and the lengths of the two parallel sides of this trapezoid are given:
A = 7m^2, b1 = 3 m and b2 = 4 m. What's missing is the width of the trapezoid.
First we write out the formula for the area of a trapezoid:
b1 + b2
A = --------------- * w, where w represents the width of the figure.
2
We need to solve this for the width, w. Multiplying both sides of the above equation by
2
------------
b1 + b2
results in
2A
------------ = w
b1 + b2
Substituting 7 m^2 for A, 3 m for b1 and 4 m for b2 results in
2(7 m^2) 14 m^2
w = ------------------ = ---------------- = 2 m
(3 + 4) m 7 m
The missing dimension is the width of the figure. This width is 2 m.
X = 2
y = 3
You can simply set these two equal to each other and solve for x. Then plug in to find y.