<span>1. Divide the top of the fraction by the bottom
<span>2. Then multiply the result by 100 and read off the answer!
</span></span>
The 1 weeks is longer because the hours is like 53 days and the weeks are like 133 days
Answer:
there are 6 six wheel trucks
Step-by-step explanation:
Answer:
a.
and 41.6
b. 52.1
Step-by-step explanation:
a.
Considering the left side triangle the blue dotted side is the side "opposite" to the angle given and the side 24 is the side that is "adjacent" to the angle given. The trigonometric ratio tan relates opposite to adjacent. Also, let the blue dotted side be y.
<u>Note:</u> the exact value of tan 60 is 
Thus, we can write 
Approximate value (rounded to nearest tenth): 
b.
Considering the triangle to the right, the side "opposite" to the angle given (53 degrees) is 41.6 (just found in part (a)) and the side "hypotenuse" (side opposite to 90 degree angle) is x. The trigonometric ratio sine relates opposite and hypotenuse.
Thus we can write and solve:

Answer:
a reflection over the x-axis and then a 90 degree clockwise rotation about the origin
Step-by-step explanation:
Lets suppose triangle JKL has the vertices on the points as follows:
J: (-1,0)
K: (0,0)
L: (0,1)
This gives us a triangle in the second quadrant with the 90 degrees corner on the origin. It says that this is then transformed by performing a 90 degree clockwise rotation about the origin and then a reflection over the y-axis. If we rotate it 90 degrees clockwise we end up with:
J: (0,1) , K: (0,0), L: (1,0)
Then we reflect it across the y-axis and get:
J: (0,1), K:(0,0), L: (-1,0)
Now we go through each answer and look for the one that ends up in the second quadrant;
If we do a reflection over the y-axis and then a 90 degree clockwise rotation about the origin we end up in the fourth quadrant.
If we do a reflection over the x-axis and then a 90 degree counterclockwise rotation about the origin we also end up in the fourth quadrant.
If we do a reflection over the x-axis and then a reflection over the y-axis we also end up in the fourth quadrant.
The third answer is the only one that yields a transformation which leads back to the original position.